Cognitively-Inspired Multi-Scale Spectral-Spatial Transformer for Hyperspectral Image Super-Resolution

Nixon M, Aguado A. Feature extraction and image processing for computer vision. Elsevier, Southampton; 2019. pp. 1–605.

Hassan MY, Khalifa OO, Abdalla AH. Neuroscience-inspired artificial vision feature parallelism and deep learning models, a comparative study ii depth. J Asian Sci Res. 2019;9(9):127–39.

Google Scholar 

Shukla A, Merugu S, Jain K. A technical review on image super-resolution techniques. Springer, Singapore; 2020. pp. 543–565.

Dmitriev EV, Kozoderov V, Dementyev A, Safonova A. Combining classifiers in the problem of thematic processing of hyperspectral aerospace images. Optoelectronics Instrum Data Process. 2018;54:213–21.

Article  Google Scholar 

Sahadevan AS. Extraction of spatial-spectral homogeneous patches and fractional abundances for field-scale agriculture monitoring using airborne hyperspectral images. Comput Electron Agric. 2021;188:106325.

Article  Google Scholar 

Gowen AA, O’Donnell CP, Cullen PJ, Downey G, Frias JM. Hyperspectral imaging-an emerging process analytical tool for food quality and safety control. Trends Food Sci Technol. 2007;18(12):590–8.

Article  Google Scholar 

Liu Z, Wang H, Li Q. Tongue tumor detection in medical hyperspectral images. Sensors. 2012;12(1):162–74.

Article  Google Scholar 

Siu W-C, Hung K-W. Review of image interpolation and super-resolution. In: Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference. IEEE, Hollywood; 2012. pp. 1–10.

Stark H, Oskoui P. High-resolution image recovery from image-plane arrays, using convex projections. J Opt Soc Am A. 1989;6(11):1715–26.

Article  Google Scholar 

Wu W, Yang X, Liu K, Liu Y, Yan B, Hua H. A new framework for remote sensing image super-resolution: sparse representation-based method by processing dictionaries with multi-type features. J Syst Archit. 2016;64:63–75

Perconti P, Plebe A. Deep learning and cognitive science. Cognition. 2020;203:104365.

Article  Google Scholar 

Dong C, Loy CC, He K, Tang X. Learning a deep convolutional network for image super-resolution. In: Proceedings of the European Conference on Computer Vision (ECCV). Springer, Cham; 2014. pp. 184–199.

Jiang K, Wang Z, Yi P, Jiang J. Hierarchical dense recursive network for image super-resolution. Pattern Recogn. 2020;107:107475.

Article  Google Scholar 

Marblestone AH, Wayne G, Kording KP. Toward an integration of deep learning and neuroscience. Front Comput Neurosci. 2016;10:94.

Article  Google Scholar 

Zhang Y, Li K, Li K, Wang L, Zhong B, Fu Y. Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV). Springer, Munich; 2018. pp. 286–301.

Chen S-B, Hu C, Luo B, Ding CHQ, Huang S-L. Pyramid attention dense network for image super-resolution. In: 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, Budapest; 2019. pp. 1–8.

Liu H, Diao X, Guo H. Image super-resolution reconstruction: a granular computing approach from the viewpoint of cognitive psychology. Sens Imaging. 2019;20:1–19.

Article  Google Scholar 

Daihong J, Sai Z, Lei D, Yueming D. Multi-scale generative adversarial network for image super-resolution. Soft Comput. 2022;26(8):3631–41.

Article  Google Scholar 

Dian R, Li S, Fang L. Learning a low tensor-train rank representation for hyperspectral image super-resolution. IEEE Trans Neural Netw Learn Syst. 2019;30(9):2672–83.

Article  MathSciNet  Google Scholar 

Wei Q, Dobigeon N, Tourneret J-Y. Bayesian fusion of multi-band images. IEEE J Sel Top Signal Process. 2015;9(6):1117–27.

Article  MATH  Google Scholar 

Zou C, Xia Y. Bayesian dictionary learning for hyperspectral image super resolution in mixed Poisson-Gaussian noise. Signal Process Image Commun. 2018;60:29–41.

Article  Google Scholar 

Zhao Y, Yang J, Zhang Q, Song L, Cheng Y, Pan Q. Hyperspectral imagery super-resolution by sparse representation and spectral regularization. EURASIP J Adv Signal Process. 2011;2011(1):1–10.

Article  Google Scholar 

Akhtar N, Shafait F, Mian A. Sparse spatio-spectral representation for hyperspectral image super-resolution. In: Proceedings of the European Conference on Computer Vision (ECCV). Springer, Cham; 2014. pp. 63–78.

Long J, Peng Y, Li J, Zhang L, Xu Y. Hyperspectral image super-resolution via subspace-based fast low tensor multi-rank regularization. Infrared Phys Technol. 2021;116:103631.

Article  Google Scholar 

Liu N, Li W, Wang Y, Tao R, Du Q, Chanussot J. A survey on hyperspectral image restoration: from the view of low-rank tensor approximation. SCIENCE CHINA Inf Sci. 2023;66(4):1–31.

Article  MathSciNet  Google Scholar 

Hu J-F, Huang T-Z, Deng L-J, Jiang T-X, Vivone G, Chanussot J. Hyperspectral image super-resolution via deep spatiospectral attention convolutional neural networks. IEEE Trans Neural Netw Learn Syst. 2022;33(12):7251–65.

Article  Google Scholar 

Hu J-F, Huang T-Z, Deng L-J, Dou H-X, Hong D, Vivone G. Fusformer: a transformer-based fusion network for hyperspectral image super-resolution. IEEE Geosci Remote Sens Lett. 2022;19:1–5.

Google Scholar 

Huang H, Yu J, Sun W. Super-resolution mapping via multi-dictionary based sparse representation. In: 2014 IEEE International Conference on Acoustics. Speech and Signal Processing (ICASSP). Florence: IEEE; 2014. p. 3523–7.

Long J, Peng Y, Li J, Zhang L, Xu Y. Hyperspectral image super-resolution via subspace-based fast low tensor multi-rank regularization. Infrared Phys Technol. 2021;116:103631.

Article  Google Scholar 

Liu C, Dong Y. CNN-enhanced graph attention network for hyperspectral image super-resolution using non-local self-similarity. Int J Remote Sens. 2022;43(13):4810–35.

Article  Google Scholar 

Hu J, Li Y, Xie W. Hyperspectral image super-resolution by spectral difference learning and spatial error correction. IEEE Geosci Remote Sens Lett. 2017;14(10):1825–9.

Article  Google Scholar 

Li, Y., Zhang, L., Dingl, C., Wei, W., Zhang, Y.: Single hyperspectral image super-resolution with grouped deep recursive residual network. In: 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM). IEEE, Xi’an; 2018. pp. 1–4.

Jiang J, Sun H, Liu X, Ma J. Learning spatial-spectral prior for super-resolution of hyperspectral imagery. IEEE Trans Comput Imaging. 2020;6:1082–96.

Article  Google Scholar 

Wang X, Ma J, Jiang J. Hyperspectral image super-resolution via recurrent feedback embedding and spatial-spectral consistency regularization. IEEE Trans Geosci Remote Sens. 2022;60:5503113.

Google Scholar 

Mei S, Yuan X, Ji J, Zhang Y, Wan S, Du Q. Hyperspectral image spatial super-resolution via 3D full convolutional neural network. Remote Sens. 2017;9(11).

Hu J, Tang Y, Fan S. Hyperspectral image super resolution based on multiscale feature fusion and aggregation network with 3-D convolution. IEEE J Sel Topics Appl Earth Obs Remote Sens. 2020;13:5180–93.

Article  Google Scholar 

Hu J, Tang Y, Liu Y, Fan S. Hyperspectral image super-resolution based on multiscale mixed attention network fusion. IEEE Geosci Remote Sens Lett. 2022;19:5511450.

Google Scholar 

Li Q, Wang Q, Li X. Mixed 2D/3D convolutional network for hyperspectral image super-resolution. Remote Sens. 2020;12(10).

Li Q, Wang Q, Li X. Exploring the relationship between 2D/3D convolution for hyperspectral image super-resolution. IEEE Trans Geosci Remote Sens. 2021;59(10):8693–703.

Article  Google Scholar 

Li Q, Yuan Y, Wang Q. Hyperspectral image super-resolution via multi-domain feature learning. Neurocomputing. 2022;472:85–94.

Article  Google Scholar 

Wang Q, Li Q, Li X. Hyperspectral image superresolution using spectrum and feature context. IEEE Trans Ind Electron. 2021;68(11):11276–85.

Article  Google Scholar 

Alzubaidi L, Bai J, Al-Sabaawi A, Santamaría J, Albahri AS, Al-dabbagh BSN, Fadhel MA, Manoufali M, Zhang J, Al-Timemy AH, Duan Y, Abdullah A, Farhan L, Lu Y, Gupta A, Albu F, Abbosh AM, Gu Y. A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications. J Big Data. 2023;10(1):46.

Article  Google Scholar 

Li X, Zhang L, You J. Domain transfer learning for hyperspectral image super-resolution. Remote Sens. 2019;11(6).

Xiao Y, Yuan Q, Jiang K, He J, Wang Y, Zhang L. From degrade to upgrade: learning a self-supervised degradation guided adaptive network for blind remote sensing image super-resolution. Inf Fus. 2023;96:297–311.

Article  Google Scholar 

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. Curran Associates, Inc., California; 2017. pp. 5998–6008.

Liang J, Cao J, Sun G, Zhang K, VanGool L, Timofte R. Swinir: image restoration using swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops. IEEE, Montreal; 2021. pp. 1833–1844.

Liu Y, Hu J, Kang X, Luo J, Fan S. Interactformer: interactive transformer and CNN for hyperspectral image super-resolution. IEEE Trans Geosci Remote Sens. 2022;60:5531715.

Google Scholar 

Gui Z, Peng D, Wu H, Long X. MSGC: multi-scale grid clustering by fusing analytical granularity and visual cognition for detecting hierarchical spatial patterns. Futur Gener Comput Syst. 2020;112:1038–56.

Article  Google Scholar 

Fan C, Jacobson A, Chen Z, He X, Zhang L, Hu X, Milford M. Bio-inspired multi-scale visual place recognition for the aerial vehicle navigation. In: Yan L, Duan H, Yu X, editors. Advances in Guidance, Navigation and Control. Singapore: Springer; 2022. p. 1039–49.

Chapter  Google Scholar 

Zamir SW, Arora A, Khan S, Hayat M, Khan FS, Yang M-H. Restormer: efficient transformer for high-resolution image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, New Orleans; 2022. pp. 5728–5739.

Lindsay GW. Attention in psychology, neuroscience, and machine learning. Front Comput Neurosci. 2020;14:29.

Article  Google Scholar 

Albu F, Mateescu A, Dumitriu N. Architecture selection for a multilayer feedforward network. In: International Conference on Microelectronics and Computer Science; 1997. pp. 131–134.

Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B. Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Montreal; 2021. pp. 10012–10022.

Wang Q, Li Q, Li X. Spatial-spectral residual network for hyperspectral image super-resolution. 2020. arXiv preprint arXiv:2001.04609.

Yasuma F, Mitsunaga T, Iso D, Nayar SK. Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum. IEEE Trans Image Process. 2010;19(9):2241–53.

Article  MathSciNet  MATH  Google Scholar 

Chakrabarti A, Zickler T. Statistics of real-world hyperspectral images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Colorado Springs; 2011. pp. 193–200.

Huang X, Zhang L. A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS images over Pavia City, northern Italy. Int J Remote Sens. 2009;30(12):3205–21.

Article  Google Scholar 

留言 (0)

沒有登入
gif