In Silico study of the effect of substituents on the structure of N-benzoyl-N’-naphthylthiourea as anti-breast cancer HER-2 positive candidates

[1] W. Yang, Y. Hu, Y.S. Yang, F. Zhang, Y. Bin Zhang, X.L. Wang, J.F. Tang, W.Q. Zhong, H.L. Zhu, Design, modification and 3D QSAR studies of novel naphthalin-containing pyrazoline derivatives with/without thiourea skeleton as anticancer agents, Bioorg. Med. Chem., 2013, 21, 1050. [Crossref], [Google Scholar], [Publisher] [2] B.E. Oyinloye, T.A. Adekiya, R.T. Aruleba, O.A. Ojo, B.O. Ajiboye, Structure-based docking studies of GLUT4 towards exploring selected phytochemicals from Solanum xanthocarpum as a therapeutic target for the treatment of cancer, Curr. Drug Discov. Technol., 2019, 16, 406. [Crossref], [Google Scholar], [Publisher] [3] H. Sung, J. Ferlay, R. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA. Cancer J. Clin., 2021, 71, 209–249. [Crossref], [Google Scholar], [Publisher] [4] H.-S. Seo, J.M. Ku, H.-S. Choi, Y.K. Choi, J.-K. Woo, M. Kim, I. Kim, C.H. Na, H. Hur, B.-H. Jang, Y.C. Shin, S.-G. Ko, Quercetin induces caspase-dependent extrinsic apoptosis through inhibition of signal transducer and activator of transcription 3 signaling in HER2-overexpressing BT-474 breast cancer cells, Oncol. Rep., 2016, 36, 31. [Crossref], [Google Scholar], [Publisher] [5] T. Widiandani, Siswandono, E. Meiyanto, Anticancer evaluation of N-benzoyl-3-allylthiourea as potential antibreast cancer agent through enhances HER-2 expression, J. Adv. Pharm. Technol. Res., 2020, 11, 163. [Crossref], [Google Scholar], [Publisher] [6] V. D’Amato, L. Raimondo, L. Formisano, M. Giuliano, S. De Placido, R. Rosa, R. Bianco, Mechanisms of lapatinib resistance in HER2-driven breast cancer, Cancer Treat. Rev., 2015, 41, 877. [Crossref], [Google Scholar], [Publisher] [7] B. Ruprecht, E.A. Zaal, J. Zecha, W. Wu, C.R. Berkers, B. Kuster, S. Lemeer, Lapatinib resistance in breast cancer cells is accompanied by phosphorylation-mediated reprogramiming of glycolysis, Cancer Res., 2017, 77, 1842. [Crossref], [Google Scholar], [Publisher] [8] R.L. Carpenter, H.-W. Lo, Regulation of apoptosis by HER2 in breast cancer, J. Carcinog. Mutagen., 2013, 7, 1. [Crossref], [Google Scholar], [Publisher] [9] A. Patel, N. Unni, Y. Peng, The changing paradigm for the treatment of HER2-positive breast cancer, Cancers, 2020, 12, 1. [Crossref], [Google Scholar], [Publisher] [10] V. Kumar, S. Krishna, M.I. Siddiqi, Virtual screening strategies: Recent advances in the identification and design of anti-cancer agents, Methods, 2015, 71, 64-70. [Crossref], [Google Scholar], [Publisher] [11] T. Baudino, Targeted cancer therapy: the next generation of cancer treatment, Curr. Drug Discov. Technol., 2015, 12, 3–20. [Crossref], [Google Scholar], [Publisher] [13] T. Widiandani, Siswandono, E. Meiyanto, M.I. Sulistyowaty, B.T. Purwanto, S. Hardjono, New N-allylthiourea derivatives: synthesis, molecular docking and in vitro cytotoxicity studies, Trop. J. Pharm. Res., 2018, 17, 1607–1613. [Crossref], [Google Scholar], [Publisher] [14] M.M. Fallatah, S. Liu, M.B. Sevigny, H. Zou, M.C. Louie, Novel flexible heteroarotinoid, SL-1-18, promotes ERα degradation to inhibit breast cancer cell growth, Cancer Lett., 2017, 408, 82. [Crossref], [Google Scholar], [Publisher] [15] H. Zou, M.B. Sevigny, S. Liu, D.T. Madden, M.C. Louie, Novel flexible heteroarotinoid, SL-1-39, inhibits HER2-positive breast cancer cell proliferation by promoting lysosomal degradation of HER2, Cancer Lett., 2019, 443, 157. [Crossref], [Google Scholar], [Publisher] [16] W. Bai, J. Ji, Q. Huang, W. Wei, Synthesis and evaluation of new thiourea derivatives as antitumor and antiangiogenic agents, Tetrahedron Lett., 2020, 61, 152366. [Crossref], [Google Scholar], [Publisher] [17] R. Pingaew, V. Prachayasittikul, N. Anuwongcharoen, S. Prachayasittikul, S. Ruchirawat, V. Prachayasittikul, Synthesis and molecular docking of N,N’-disubstituted thiourea derivatives as novel aromatase inhibitors, Bioorg. Chem., 2018, 79, 171. [Crossref], [Google Scholar], [Publisher] [18] G. Kirishnamaline, J.D. Magdaline, T. Chithambarathanu, D. Aruldhas, A.R. Anuf, Theoretical investigation of structure, anticancer activity and molecular docking of thiourea derivatives, J. Mol. Struct., 2020, 1225, 129118. [Crossref], [Google Scholar], [Publisher] [20] S. Hardjono, T. Widiandani, B.T. Purwanto, A.L. Nasyanka, Molecular docking of N-benzoyl-N’-(4-fluorophenyl) thiourea derivatives as anticancer drug candidate and their ADMET prediction, Res. J. Pharm. Technol., 2019, 12, 2160. [Crossref], [Google Scholar], [Publisher] [21] A.L. Nasyanka, S. Siswodihardjo, S. Hardjono, Docking, synthesis, and cytotoxic activity of N-4-methoxybenzoyl-N’-(4-fluorophenyl)thiourea on HeLa cell line, Thai J. Pharm. Sci., 2017, 41, 99. [PDF], [Google Scholar], [Publisher] [22] D. Kesuma, A.L. Nasyanka, M. Rudyanto, Siswandono, B.T. Purwanto, I.G.A. Sumartha, A prospective modification structure: the effect of lipophilic and electronic properties of N-(phenylcarbamothyoil)benzamide derivatives on cytotoxic activity by in silico and in vitro assay with T47D cells, Rasayan J. Chem., 2020, 13, 1914. [Crossref], [Google Scholar], [Publisher] [23] Ruswanto, A.M. Miftah, D.H. Tjahjono, Siswandono, Synthesis and in vitro cytotoxicity of 1-benzoyl-3-methyl thiourea derivatives, Procedia Chem., 2015, 17, 157. [Crossref], [Google Scholar], [Publisher] [24] R. Suharjo, A.M. Miftah, D.H. Tjahjono, Siswandono, Synthesis and in vitro test of 1-(4-chlorobenzoyl)-3-methyl thiourea on Hela cell, In Proceedings of The 5TH Annual Basic Science International Conference: Malang, 2015, 203. [Publisher] [25] C. Cava, I. Castiglioni, Integration of molecular docking and in vitro studies: A powerful approach for drug discovery in breast cancer, App. Sci., 2020, 10, 698. [Crossref], [Google Scholar], [Publisher] [26] G. Syahputra, L. Ambarsari, T. Sumaryada, Simulasi docking kurkumin enol, bismetoksikurkumin dan analognya sebagai inhibitor enzim12-Lipoksigenase, Jurnal Biofisika, 2014, 10, 55. [Google Scholar], [Publisher] [27] M.R.F. Pratama, E.N. Praditapuspa, D. Kesuma, H. Poerwono, T. Widiandani, S. Siswodihardjo, Boesenbergia pandurata as an anti-breast cancer agent: molecular docking and ADMET study, Lett. Drug Des. Discov., 2022, 19, 606–626. [Crossref], [Google Scholar], [Publisher] [28] M.R.F. Pratama, H. Poerwono, S. Siswodihardjo, Molecular docking of novel 5-O-benzoylpinostrobin derivatives as SARS CoV-2 main protease inhibitors, Pharm. Sci., 2020, 26, S63. [Crossref], [Google Scholar], [Publisher] [29] M.R.F. Pratama, Siswandono, Number of runs variations on Autodock 4 do not have a significant effect on RMSD from docking results, Pharm. Pharmacol., 2020, 6, 476. [Crossref], [Google Scholar], [Publisher] [30] M. Rudrapal, D. Chetia, Virtual screening, molecular docking and QSAR studies in drug discovery and development programme, J. Drug Deliv. Ther., 2020, 10, 225. [Crossref], [Google Scholar], [Publisher] [31] M.R.F. Pratama, H. Poerwono, S. Siswodihardjo, Design and molecular docking of novel 5-O-Benzoylpinostrobin derivatives as anti-breast cancer, Thai J. Pharm. Sci., 2019, 43, 201. [Google Scholar], [Publisher] [32] T. Nauli, Penentuan sisi aktif selulase Aspergillus niger dengan docking ligan, J. Kim. Terap. Indones., 2014, 16, 94. [Crossref], [Google Scholar], [Publisher] [33] F. Azam, M.V.V. Prasad, N. Thangavel, H.I. Ali, Molecular docking studies of 1-(substituted phenyl)-3-(naphtha [1, 2-d] thiazol-2-yl) urea/thiourea derivatives with human adenosine A2A receptor, Bioinformation, 2011, 6, 330. [Crossref], [Google Scholar], [Publisher] [34] J. G. Topliss, Utilization of operational schemes for analog synthesis in drug design, J. Med. Chem., 1972, 15, 1006–1011. [Crossref], [Google Scholar], [Publisher]

Comments (0)

No login
gif