Stuchlik A, Sumiyoshi T. Cognitive deficits in schizophrenia and other neuropsychiatric disorders: convergence of preclinical and clinical evidence. Front Behav Neurosci. 2014;8:444.
Article PubMed PubMed Central Google Scholar
James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, Abbastabar H, Abd-Allah F, Abdela J, Abdelalim A, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the global burden of disease study 2017. Lancet. 2018;392:1789–858.
Birnbaum R, Weinberger DR. Genetic insights into the neurodevelopmental origins of schizophrenia. Nat Rev Neurosci. 2017;18:727–40.
Article CAS PubMed Google Scholar
Kim JS, Shin KS, Jung WH, Kim SN, Kwon JS, Chung CK. Power spectral aspects of the default mode network in schizophrenia: an MEG study. BMC Neurosci. 2014;15:104.
Article PubMed PubMed Central Google Scholar
Moskowitz A, Heim G. Eugen Bleuler’s dementia praecox or the group of schizophrenias (1911): a centenary appreciation and reconsideration. Schizophr Bull. 2011;37:471–9.
Article PubMed PubMed Central Google Scholar
Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016;388:86–97.
Article PubMed PubMed Central Google Scholar
Howes OD, Murray RM. Schizophrenia: an integrated sociodevelopmental-cognitive model. Lancet. 2014;383:1677–87.
Hilker R, Helenius D, Fagerlund B, Skytthe A, Christensen K, Werge TM, Nordentoft M, Glenthøj B. Heritability of schizophrenia and schizophrenia spectrum based on the nationwide Danish twin register. Biol Psychiatry. 2018;83:492–8.
Mendizabal I, Berto S, Usui N, Toriumi K, Chatterjee P, Douglas C, Huh I, Jeong H, Layman T, Tamminga CA, et al. Cell type-specific epigenetic links to schizophrenia risk in the brain. Genome Biol. 2019;20:135.
Article PubMed PubMed Central Google Scholar
Gusev A, Mancuso N, Won H, Kousi M, Finucane HK, Reshef Y, Song L, Safifi A, McCarroll S, Neale BM. Transcriptome wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat Genet. 2018;50:538–48.
Article CAS PubMed PubMed Central Google Scholar
Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, Ruderfer DM, Oh EC, Topol A, Shah HR. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci. 2016;19:1442–53.
Article CAS PubMed PubMed Central Google Scholar
Jaffe AE, Straub RE, Shin JH, Tao R, Gao Y, Collado-Torres L, Kam-Thong T, Xi HS, Quan J, Chen Q. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nat Neurosci. 2018;21:1117–25.
Article CAS PubMed PubMed Central Google Scholar
Cardno AG, Gottesman II. Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet. 2000;97:12–7.
Article CAS PubMed Google Scholar
Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447:425–32.
Article CAS PubMed Google Scholar
Zeng Y, Chen T. DNA methylation reprogramming during mammalian development. Genes. 2019;10:257.
Article CAS PubMed PubMed Central Google Scholar
Nishioka M, Bundo M, Kasai K, Iwamoto K. DNA methylation in schizophrenia: Progress and challenges of epigenetic studies. Genome Med. 2012;4:96.
Article CAS PubMed PubMed Central Google Scholar
Martinez-Jauand M, Sitges C, Rodriguez V, Picornell A, Ramon M, Buskila D, Montoya P. Pain sensitivity in fibromyalgia is associated with catechol-O-methyltransferase (COMT) gene. Eur J Pain. 2013;17:16–27.
Article CAS PubMed Google Scholar
Sozuguzel MD, Sazci A, Yildiz M. Female gender specific association of the Reelin (RELN) gene rs7341475 variant with schizophrenia. Mol Biol Rep. 2019;46:3411–6.
Article CAS PubMed Google Scholar
Janicijevic SM, Dejanovic SD, Borovcanin M. Interplay of brain-derived neurotrophic factor and cytokines in schizophrenia. Serb J Exp Clin Res. 2018;108:110–7.
Leonard S, Freedman R. Genetics of chromosome 15q13–q14 in schizophrenia. Biol Psychiatry. 2006;60:115–22.
Article CAS PubMed Google Scholar
Iwamoto K, Bundo M, Yamada K, Takao H, Iwayama-Shigeno Y, Yoshikawa T, Kato T. DNA methylation status of SOX10 correlates with its downregulation and oligodendrocyte dysfunction in schizophrenia. J Neurosci. 2005;25:5376–81.
Article CAS PubMed PubMed Central Google Scholar
Hu T-M, Chen S-J, Hsu S-H, Cheng M-C. Functional analyses and effect of DNA methylation on the EGR1 gene in patients with schizophrenia. Psychiatry Res. 2019;275:276–82.
Article CAS PubMed Google Scholar
Gowher H, Liebert K, Hermann A, Xu G, Jeltsch A. Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J Biol Chem. 2005;280(14):13341–8.
Article CAS PubMed Google Scholar
Symmank J, Bayer C, Schmidt C, et al. DNMT1 modulates interneuron morphology by regulating Pak6 expression through crosstalk with histone modifications. Epigenetics. 2018;13(5):536–56.
Article PubMed PubMed Central Google Scholar
Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases DNMT3A and DNMT3B are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.
Article CAS PubMed Google Scholar
Bourc’his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking DNMT3L. Nature. 2004;431:96–9.
Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6:597–610.
Article CAS PubMed Google Scholar
Ripke S, Neale BM, Corvin A, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.
Article CAS PubMed Central Google Scholar
Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell. 2012;148(6):1223–41.
Article CAS PubMed PubMed Central Google Scholar
Saradalekshmi KR, Neetha NV, Sathyan S, Nair IV, Nair CM, Banerjee M. DNA methyl transferase (DNMT) gene polymorphisms could be a primary event in epigenetic susceptibility to schizophrenia. PLoS ONE. 2014;9(5):e98182–8.
Article PubMed PubMed Central Google Scholar
Ping J, Zhang J, Wan J, Banerjee A, Huang C, Yu J, Jiang T, Du B. Correlation of four single nucleotide polymorphisms of the RELN gene with Schizophrenia. East Asian Arch Psychiatry. 2021;31(4):112–8. https://doi.org/10.12809/eaap2168.
Article CAS PubMed Google Scholar
Ping J, Zhang J, Wan J, Huang C, Luo J, Du B, Jiang T. A polymorphism in the BDNF gene (rs11030101) is associated with negative symptoms in Chinese Han patients with schizophrenia. Front Genet. 2022;16(13):849227.
Palha JA, Santos NC, Marques F, et al. Do genes and environment meet to regulate cerebrospinal fluid dynamics? Relevance for schizophrenia. Front Cell Neurosci. 2012;6(8):31.
PubMed PubMed Central Google Scholar
Pogribny IP, Beland FA. DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci. 2009;66(14):2249–61.
Article CAS PubMed Google Scholar
Grayson DR, Guidotti A. The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmaeology. 2013;38(1):138–66.
Saradalekshmi KR, Neetha NV, Satyan S, et al. DNA methyltransferase (DNMT) gene polymorphisms could be a primary event in epigenetic susceptibility to schizophrenia. PLoS ONE. 2014;9(5):e98182.
Article PubMed PubMed Central Google Scholar
Saxena S, Maroju PA, Choudhury S, Voina VC, Naik P, Gowdhaman K, Kkani P, Chennoju K, Ganesh Kumar S, Ramasubramanian C, Prasad Rao G, Jamma T, Narayan KP, Mohan KN. Functional analysis of DNMT1 SNPs (rs2228611 and rs2114724) associated with schizophrenia. Genet Res. 2021;31(2021):6698979. https://doi.org/10.1155/2021/6698979.
Comments (0)