Role of Hydrophobic Amino-Acid Side-Chains in the Narrow Selectivity Filter of the CFTR Chloride Channel Pore in Conductance and Selectivity

Csanády L, Vergani P, Gadsby DC (2019) Structure, gating, and regulation of the CFTR anion channel. Physiol Rev 99:707–738. https://doi.org/10.1152/physrev.00007.2018

Article  CAS  PubMed  Google Scholar 

Farkas B, Tordai H, Padányi R, Tordai A, Gera J, Paragi G, Hegedüs T (2020) Discovering the chloride pathway in the CFTR channel. Cell Mol Life Sci 77:765–778. https://doi.org/10.1007/s00018-019-03211-4

Article  CAS  PubMed  Google Scholar 

Fatehi M, Linsdell P (2009) Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines. J Membr Biol 228:151–164. https://doi.org/10.1007/s00232-009-9167-3

Article  CAS  PubMed  Google Scholar 

Gao X, Bai Y, Hwang T-C (2013) Cysteine scanning of CFTR’s first transmembrane segment reveals its plausible roles in gating and permeation. Biophys J 104:786–797. https://doi.org/10.1016/j.bpj.2012.12.048

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ge N, Muise CN, Gong X, Linsdell P (2004) Direct comparison of the functional roles played by different membrane spanning regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Biol Chem 279:55283–55289. https://doi.org/10.1074/jbc.M411935200

Article  CAS  PubMed  Google Scholar 

Gong X, Linsdell P (2004) Maximization of the rate of chloride conduction in the CFTR channel pore by ion-ion interactions. Arch Biochem Biophys 426:78–82. https://doi.org/10.1016/j.abb.2004.03.033

Article  CAS  PubMed  Google Scholar 

Gong X, Burbridge SM, Cowley EA, Linsdell P (2002) Molecular determinants of au(CN)2– binding and permeability within the cystic fibrosis transmembrane conductance regulator Cl– channel pore. J Physiol 540:39–47. https://doi.org/10.1113/jphysiol.2001.013235

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoffmann B, Elbahnsi A, Lehn P, Décout J-L, Pietrucci F, Mornon J-P, Callebaut I (2018) Combining theoretical and experimental data to decipher CFTR 3D structures and functions. Cell Mol Life Sci 75:3829–3855. https://doi.org/10.1007/s00018-018-2835-7

Article  CAS  PubMed  Google Scholar 

Hwang T-C, Yeh J-T, Zhang J, Yu Y-C, Yeh H-I, Destefano S (2018) Structural mechanisms of CFTR function and dysfunction. J Gen Physiol 150:539–570. https://doi.org/10.1085/jgp.201711946

Article  CAS  PubMed  PubMed Central  Google Scholar 

Linsdell P (2001) Relationship between anion binding and anion permeability revealed by mutagenesis within the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Physiol 531:51–66. https://doi.org/10.1111/j.1469-7793.2001.0051j.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Linsdell P (2015) Interactions between permeant and blocking anions inside the CFTR chloride channel pore. Biochim Biophys Acta 1848:1573–1590. https://doi.org/10.1016/j.bbamem.2015.04.004

Article  CAS  PubMed  Google Scholar 

Linsdell P (2017) Architecture and functional properties of the CFTR channel pore. Cell Mol Life Sci 74:67–83. https://doi.org/10.1007/s00018-016-2389-5

Article  CAS  PubMed  Google Scholar 

Linsdell P (2018) Cystic fibrosis transmembrane conductance regulator (CFTR): making an ion channel out of an active transporter structure. Channels 12:284–290. https://doi.org/10.1080/19336950.2018.1502585

Article  PubMed  PubMed Central  Google Scholar 

Linsdell P, Hanrahan JW (1998) Adenosine triphosphate-dependent asymmetry of anion permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. J Gen Physiol 111:601–614. https://doi.org/10.1085/jgp.111.4.601

Article  CAS  PubMed  PubMed Central  Google Scholar 

Linsdell P, Zheng S-X, Hanrahan JW (1998) Non-pore lining amino acid side chains influence anion selectivity of the human CFTR Cl– channel expressed in mammalian cell lines. J Physiol 512:1–16. https://doi.org/10.1111/j.1469-7793.1998.001bf.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Linsdell P, Evagelidis A, Hanrahan JW (2000) Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore. Biophys J 78:2973–2982. https://doi.org/10.1016/S0006-3495(00)76836-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Linsdell P, Irving CL, Cowley EA, El Hiani Y (2021) Two positively charged amino acid side-chains in the inner vestibule of the CFTR channel pore play analogous roles in controlling anion binding and anion conductance. Cell Mol Life Sci 78:5213–5223. https://doi.org/10.1007/s00018-021-03859-x

Article  CAS  PubMed  Google Scholar 

McDonough S, Davidson N, Lester HA, McCarty NA (1994) Novel pore-lining residues in CFTR than govern permeation and open-channel block. Neuron 13:623–634. https://doi.org/10.1016/0896-6273(94)90030-2

Article  CAS  PubMed  Google Scholar 

Negoda A, El Hiani Y, Cowley EA, Linsdell P (2017) Contribution of a leucine residue in the first transmembrane segment to the selectivity filter region in the CFTR chloride channel. Biochim Biophys Acta 1859:1049–1058. https://doi.org/10.1016/j.bbamem.2017.02.014

Article  CAS  Google Scholar 

Negoda A, Hogan MS, Cowley EA, Linsdell P (2019) Contribution of the eighth transmembrane segment to the function of the CFTR chloride channel pore. Cell Mol Life Sci 76:2411–2423. https://doi.org/10.1007/s00018-019-03043-2

Article  CAS  PubMed  Google Scholar 

Richards FM (1974) The interpretation of protein structures: total volume, group volume distributions and packing density. J Mol Biol 82:1–14. https://doi.org/10.1016/0022-2836(74)90570-1

Article  CAS  PubMed  Google Scholar 

Sheppard DN, Travis SM, Ishihara H, Welsh MJ (1996) Contribution of proline residues in the membrane-spanning domains of cystic fibrosis transmembrane conductance regulator to chloride channel function. J Biol Chem 271:14995–15001. https://doi.org/10.1074/jbc.271.25.14995

Article  CAS  PubMed  Google Scholar 

Shteinberg M, Haq IJ, Polineni D, Davies JC (2021) Cystic fibrosis. Lancet 397:2195–2211. https://doi.org/10.1016/S0140-6736(20)32542-3

Article  CAS  PubMed  Google Scholar 

Smith SS, Steinle ED, Meyerhoff ME, Dawson DC (1999) Cystic fibrosis transmembrane conductance regulator. Physical basis for lyotropic anion selectivity patterns. J Gen Physiol 114:799–818. https://doi.org/10.1085/jgp.114.6.799

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei S, Roessler BC, Icyuz M, Chauvet S, Tao B, Hartman JL, Kirk KL (2016) Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels. FASEB J 30:1247–1262. https://doi.org/10.1096/fj.15-278382

Article  CAS  PubMed  Google Scholar 

Zeng ZW, Linsdell P, Pomès R (2023) Molecular dynamics study of Cl– permeation through cystic fibrosis transmembrane conductance regulator (CFTR). Cell Mol Life Sci 80:51. https://doi.org/10.1007/s00018-022-04621-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Z, Liu F, Chen J (2018) Molecular structure of the ATP-bound, phosphorylated human CFTR. Proc Natl Acad Sci USA 115:12757–12762. https://doi.org/10.1073/pnas.1815287115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou J-J, Fatehi M, Linsdell P (2007) Direct and indirect effects of mutations at the outer mouth of the CFTR chloride channel pore. J Membr Biol 216:129–142. https://doi.org/10.1007/s00232-007-9056-6

Article  CAS  PubMed  Google Scholar 

Zhou J-J, Li M-S, Qi J, Linsdell P (2010) Regulation of conductance by the number of fixed positive charges in the intracellular vestibule of the CFTR chloride channel pore. J Gen Physiol 135:229–245. https://doi.org/10.1085/jgp.200910327

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif