Utility of deep learning for the diagnosis of cochlear malformation on temporal bone CT

Sennaroglu L, Saatci I. A new classification for cochleovestibular malformations[J]. Laryngoscope. 2002;112:2230–41.

Article  PubMed  Google Scholar 

Sennaroglu L, Saatci I. Unpartitioned versus incompletely partitioned cochleae: radiologic differentiation[J]. Otol Neurotol. 2004;25:520–9.

Article  PubMed  Google Scholar 

Reefhuis J, Honein MA, Whitney CG, et al. Risk of bacterial meningitis in children with cochlear implants[J]. N Engl J Med. 2003;349:435–45.

Article  PubMed  Google Scholar 

Sennaroglu L. Cochlear implantation in inner ear malformations—a review article[J]. Cochlear Implants Int. 2010;11(1):4–41.

Article  PubMed  Google Scholar 

Johnson J, Anil KL. Sensorineural and conductive hearing loss associated with lateral semicircular canal malformation[J]. Laryngoscope. 2000;110:1673–9.

Article  CAS  PubMed  Google Scholar 

Huo L, Wang H. Characteristics and application of inner ear CT in 20 cases of sensorineural hearing loss in children[J]. Acta Otolaryngol. 2012;132(12):1261–5.

Article  PubMed  Google Scholar 

Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks[J]. Proc Adv Neural Inf Process Syst. 2012;25:1097–105.

Google Scholar 

Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[J]. In: IEEE, 2015, pp 1–9.

He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[M]. IEEE Conf Comput Vis Pattern Recognit (CVPR). 2016;2016:770–8.

Google Scholar 

Shin HC, Roth HR, Gao M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Trans Med Imaging. 2016;35(5):1285–98.

Article  PubMed  Google Scholar 

Al-Masni MA, Al-Antari MA, Park JM, et al. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system[J]. Comput Methods Programs Biomed. 2018;157:85–94.

Article  PubMed  Google Scholar 

Hsieh KL, Lo CM, Hsiao CJ. Computer-aided grading of gliomas based on local and global MRI features[J]. Comput Methods Programs Biomed. 2017;139:31–8.

Article  PubMed  Google Scholar 

Sennaroglu L, Bajin MD. Classification and current management of inner ear malformations[J]. Balkan Med J. 2017;34(5):397–411.

Article  PubMed  PubMed Central  Google Scholar 

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition [M]. In: Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas, USA. 2016, pp 770–778.

Hu J, Shen L, Albanie S, et al. Squeeze-and-excitation networks[J]. IEEE Trans Pattern Anal Mach Intell. 2020;42(8):2011–23.

Article  PubMed  Google Scholar 

Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[M]. IEEE Conf Comput Vis Pattern Recognit (CVPR). 2017;2017:2261–9.

Google Scholar 

Mafong DD, Shin JE. Use of laboratory evaluation and radiologic imaging in the diagnostic evaluation of children with sensorineural hearing loss [J]. Laryngoscope. 2002;112:1–7.

Article  PubMed  Google Scholar 

Adunka O, Kiefer J. Impact of electrode insertion depth on intracochlear trauma [J]. Otolaryngol Head Neck Surg. 2006;135(3):374–82.

Article  PubMed  Google Scholar 

Cha D, Pae C, Seong SB, et al. Automated diagnosis of ear disease using ensemble deep learning with a big otoendoscopy image database [J]. EBioMedicine. 2019;45:606–14.

Article  PubMed  PubMed Central  Google Scholar 

Hallac RR, Lee J, Pressler M, et al. Identifying ear abnormality from 2D photographs using convolutional neural networks [J]. Sci Rep. 2019;9(1):18198.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miwa T, Minoda R, Yamaguchi T, et al. Application of artificial intelligence using a convolutional neural network for detecting cholesteatoma in endoscopic enhanced images[J]. Auris Nasus Larynx. 2021;49:11–7.

Article  PubMed  Google Scholar 

Fujima N, Andreu-Arasa VC, Onoue K, et al. Utility of deep learning for the diagnosis of otosclerosis on temporal bone CT. Eur Radiol. 2021;31(7):5206–11.

Article  PubMed  Google Scholar 

Wang YM, Li Y, Cheng YS, et al. Deep learning in automated region proposal and diagnosis of chronic otitis media based on computed tomography. Ear Hear. 2020;41(3):669–77.

Article  PubMed  Google Scholar 

Byun H, Park CJ, Oh SJ, et al. Automatic prediction of conductive hearing loss using video pneumatic otoscopy and deep learning algorithm. Ear Hear. 2022;43:1–11.

Google Scholar 

Eroglu O, Eroglu Y, Yildirim M, et al. Is it useful to use computerized tomography image-based artificial intelligence modelling in the differential diagnosis of chronic otitis media with and without cholesteatoma?[J]. Am J Otolaryngol. 2022;43:103395.

Article  PubMed  Google Scholar 

Takahashi M, Noda K, Yoshida K, et al. Preoperative prediction by artificial intelligence for mastoid extension in pars flaccida cholesteatoma using temporal bone high-resolution computed tomography: a retrospective study[J]. PLoS ONE. 2022;17(10):e0273915.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif