Early patello-femoral condropathy assessment through quantitative analyses via T2 mapping magnetic resonance after anterior cruciate ligament reconstruction

Hunter DJ, Bierma-Zeinstra S (2019) Osteoarthritis. Lancet Lond Engl 393:1745–1759. https://doi.org/10.1016/S0140-6736(19)30417-9

Article  CAS  Google Scholar 

Giorgino R, Albano D, Fusco S, Peretti GM, Mangiavini L, Messina C (2023) Knee osteoarthritis: epidemiology, pathogenesis, and mesenchymal stem cells: what else is new? An update. Int J Mol Sci 24:6405. https://doi.org/10.3390/ijms24076405

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chambat P, Guier C, Sonnery-Cottet B, Fayard J-M, Thaunat M (2013) The evolution of ACL reconstruction over the last fifty years. Int Orthop 37:181–186. https://doi.org/10.1007/s00264-012-1759-3

Article  PubMed  PubMed Central  Google Scholar 

Freedman KB, D’Amato MJ, Nedeff DD, Kaz A, Bach BR (2003) Arthroscopic anterior cruciate ligament reconstruction: a metaanalysis comparing patellar tendon and hamstring tendon autografts. Am J Sports Med 31:2–11. https://doi.org/10.1177/03635465030310011501

Article  PubMed  Google Scholar 

Gifstad T, Foss OA, Engebretsen L, Lind M, Forssblad M, Albrektsen G, Drogset JO (2014) Lower risk of revision with patellar tendon autografts compared with hamstring autografts: a registry study based on 45,998 primary ACL reconstructions in Scandinavia. Am J Sports Med 42:2319–2328. https://doi.org/10.1177/0363546514548164

Article  PubMed  Google Scholar 

Li S, Chen Y, Lin Z, Cui W, Zhao J, Su W (2012) A systematic review of randomized controlled clinical trials comparing hamstring autografts versus bone-patellar tendon-bone autografts for the reconstruction of the anterior cruciate ligament. Arch Orthop Trauma Surg 132:1287–1297. https://doi.org/10.1007/s00402-012-1532-5

Article  PubMed  Google Scholar 

Lien-Iversen T, Morgan DB, Jensen C, Risberg MA, Engebretsen L, Viberg B (2020) Does surgery reduce knee osteoarthritis, meniscal injury and subsequent complications compared with non-surgery after ACL rupture with at least 10 years follow-up? A systematic review and meta-analysis. Br J Sports Med 54:592–598. https://doi.org/10.1136/bjsports-2019-100765

Article  PubMed  Google Scholar 

Marques FS, Barbosa PHB, Alves PR, Zelada S, Nunes RPS, de Souza MR, Pedro MAC, Nunes JF, Alves WM, de Campos GC (2020) Anterior knee pain after anterior cruciate ligament reconstruction. Orthop J Sports Med. https://doi.org/10.1177/2325967120961082

Article  PubMed  PubMed Central  Google Scholar 

Samuelsen BT, Webster KE, Johnson NR, Hewett TE, Krych AJ (2017) Hamstring autograft versus patellar tendon autograft for ACL reconstruction: is there a difference in graft failure rate? A meta-analysis of 47,613 patients. Clin Orthop 475:2459–2468. https://doi.org/10.1007/s11999-017-5278-9

Article  PubMed  PubMed Central  Google Scholar 

Culvenor AG, Cook JL, Collins NJ, Crossley KM (2013) Is patellofemoral joint osteoarthritis an under-recognised outcome of anterior cruciate ligament reconstruction? A narrative literature review. Br J Sports Med 47:66–70. https://doi.org/10.1136/bjsports-2012-091490

Article  PubMed  Google Scholar 

Culvenor AG, Lai CCH, Gabbe BJ, Makdissi M, Collins NJ, Vicenzino B, Morris HG, Crossley KM (2014) Patellofemoral osteoarthritis is prevalent and associated with worse symptoms and function after hamstring tendon autograft ACL reconstruction. Br J Sports Med 48:435–439. https://doi.org/10.1136/bjsports-2013-092975

Article  PubMed  Google Scholar 

Øiestad BE, Holm I, Engebretsen L, Aune AK, Gunderson R, Risberg MA (2013) The prevalence of patellofemoral osteoarthritis 12 years after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 21:942–949. https://doi.org/10.1007/s00167-012-2161-9

Article  Google Scholar 

Ajuied A, Wong F, Smith C, Norris M, Earnshaw P, Back D, Davies A (2014) Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: a systematic review and meta-analysis. Am J Sports Med 42:2242–2252. https://doi.org/10.1177/0363546513508376

Article  PubMed  Google Scholar 

Belk JW, Kraeutler MJ, Carver TJ, McCarty EC (2018) Knee osteoarthritis after anterior cruciate ligament reconstruction with bone-patellar tendon-bone versus hamstring tendon autograft: a systematic review of randomized controlled trials. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 34:1358–1365. https://doi.org/10.1016/j.arthro.2017.11.032

Article  Google Scholar 

Zheng W, Li H, Hu K, Li L, Bei M (2021) Chondromalacia patellae: current options and emerging cell therapies. Stem Cell Res Ther 12:412. https://doi.org/10.1186/s13287-021-02478-4

Article  PubMed  PubMed Central  Google Scholar 

da Costa SR, da Mota RF, Albuquerque E, Helito CP, Camanho GL (2021) The role of viscosupplementation in patellar chondropathy. Ther Adv Musculoskelet Dis. https://doi.org/10.1177/1759720X211015005

Article  PubMed  PubMed Central  Google Scholar 

Filardo G, Di Matteo B, Di Martino A, Merli ML, Cenacchi A, Fornasari P, Marcacci M, Kon E (2015) Platelet-rich plasma intra-articular knee injections show no superiority versus viscosupplementation: a randomized controlled trial. Am J Sports Med 43:1575–1582. https://doi.org/10.1177/0363546515582027

Article  PubMed  Google Scholar 

Bakhtiary AH, Fatemi E (2008) Open versus closed kinetic chain exercises for patellar chondromalacia. Br J Sports Med 42:99–102. https://doi.org/10.1136/bjsm.2007.038109. (discussion 102)

Article  CAS  PubMed  Google Scholar 

Fu Y, Karbaat L, Wu L, Leijten J, Both SK, Karperien M (2017) Trophic effects of mesenchymal stem cells in tissue regeneration. Tissue Eng Part B Rev 23:515–528. https://doi.org/10.1089/ten.TEB.2016.0365

Article  CAS  PubMed  Google Scholar 

Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25:829–848. https://doi.org/10.3727/096368915X689622

Article  PubMed  Google Scholar 

Surowiec RK, Lucas EP, Ho CP (2014) Quantitative MRI in the evaluation of articular cartilage health: reproducibility and variability with a focus on T2 mapping. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22:1385–1395. https://doi.org/10.1007/s00167-013-2714-6

Article  Google Scholar 

Baum T, Joseph GB, Karampinos DC, Jungmann PM, Link TM, Bauer JS (2013) Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthritis Cartilage 21:1474–1484. https://doi.org/10.1016/j.joca.2013.07.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Le J, Peng Q, Sperling K (2016) Biochemical magnetic resonance imaging of knee articular cartilage: T1rho and T2 mapping as cartilage degeneration biomarkers. Ann N Y Acad Sci 1383:34–42. https://doi.org/10.1111/nyas.13189

Article  PubMed  Google Scholar 

Patterson BE, Culvenor AG, Barton CJ, Guermazi A, Stefanik JJ, Morris HG, Whitehead TS, Crossley KM (2018) Worsening knee osteoarthritis features on magnetic resonance imaging 1–5 years after anterior cruciate ligament reconstruction. Am J Sports Med 46:2873–2883. https://doi.org/10.1177/0363546518789685

Article  PubMed  PubMed Central  Google Scholar 

Culvenor AG, Collins NJ, Guermazi A, Cook JL, Vicenzino B, Khan KM, Beck N, van Leeuwen J, Crossley KM (2015) Early knee osteoarthritis is evident one year following anterior cruciate ligament reconstruction: a magnetic resonance imaging evaluation. Arthritis Rheumatol Hoboken NJ 67:946–955. https://doi.org/10.1002/art.39005

Article  CAS  Google Scholar 

Theologis AA, Haughom B, Liang F, Zhang Y, Majumdar S, Link TM, Ma CB, Li X (2014) Comparison of T1rho relaxation times between ACL-reconstructed knees and contralateral uninjured knees. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22:298–307. https://doi.org/10.1007/s00167-013-2397-z

Article  Google Scholar 

Vogrig C, Louis J-S, Avila F, Gillet R, Hossu G, Blum-Moyse A, GondimTeixeira PA (2021) Synthetic MRI is not yet ready for morphologic and functional assessment of patellar cartilage at 1.5Tesla. Diagn Interv Imaging 102:181–187. https://doi.org/10.1016/j.diii.2020.09.002

Article  CAS  PubMed  Google Scholar 

Yao W, Qu N, Lu Z, Yang S (2009) The application of T1 and T2 relaxation time and magnetization transfer ratios to the early diagnosis of patellar cartilage osteoarthritis. Skeletal Radiol 38:1055–1062. https://doi.org/10.1007/s00256-009-0769-8

Article  PubMed  Google Scholar 

Apprich S, Welsch GH, Mamisch TC, Szomolanyi P, Mayerhoefer M, Pinker K, Trattnig S (2010) Detection of degenerative cartilage disease: comparison of high-resolution morphological MR and quantitative T2 mapping at 3.0 Tesla. Osteoarthritis Cartilage 18:1211–1217. https://doi.org/10.1016/j.joca.2010.06.002

Article  CAS  PubMed  Google Scholar 

Su F, Hilton JF, Nardo L, Wu S, Liang F, Link TM, Ma CB, Li X (2013) Cartilage morphology and T1ρ and T2 quantification in ACL-reconstructed knees: a 2-year follow-up. Osteoarthritis Cartilage 21:1058–1067. https://doi.org/10.1016/j.joca.2013.05.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Kuo D, Theologis A, Carballido-Gamio J, Stehling C, Link TM, Ma CB, Majumdar S (2011) Cartilage in anterior cruciate ligament-reconstructed knees: MR imaging T1 and T2–initial experience with 1-year follow-up. Radiology 258:505–514. https://doi.org/10.1148/radiol.10101006

Article  PubMed  PubMed Central  Google Scholar 

Osteoarthritis—PubMed, (n.d.). https://pubmed.ncbi.nlm.nih.gov/31034380/. Accessed June 26, 2023.

Slattery C, Kweon CY (2018) Classifications in brief: outerbridge classification of chondral lesions. Clin Orthop 476:2101–2104. https://doi.org/10.1007/s11999.0000000000000255

Article  PubMed  PubMed Central  Google Scholar 

Zhao H, Li H, Liang S, Wang X, Yang F (2022) T2 mapping for knee cartilage degeneration in young patients with mild symptoms. BMC Med Imaging 22:72. https://doi.org/10.1186/s12880-022-00799-1

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif