A clock for all seasons in the subterranean

Amaya JP, Cuello PA, Valentinuzzi VS, Lacey EA (2021) Dynamic spatial overlap in a solitary subterranean rodent: the Anillaco tuco-tuco (Ctenomys sp.). J Mammal 102:826–836. https://doi.org/10.1093/jmammal/gyab011

Article  Google Scholar 

Aschoff J (1960) Exogenous and endogenous components in circadian rhythms. Cold Spr Harb Symp Quant Biol 25:11–28. https://doi.org/10.1101/sqb.1960.025.01.004

Article  CAS  Google Scholar 

Beale AD, Whitmore D, Moran D (2016) Life in a dark biosphere: a review of circadian physiology in ‘arrhythmic’ environments. J Comp Physiol B-Biochem Syst Environ Physiol 186:947–968. https://doi.org/10.1007/s00360-016-1000-6

Article  Google Scholar 

Ben-Shlomo R, Ritte U, Nevo E (1995) Activity pattern and rhythm in the subterranean mole-rat superspecies Spalax ehrenbergi. Behav Genet 25:239–245. https://doi.org/10.1007/BF02197182

Article  CAS  PubMed  Google Scholar 

Buijs RM, Escobar C (2007) Corticosterone and activity: the long arms of the clock talk back. Endocrinology 148(11):5162–5164. https://doi.org/10.1210/en.2007-0926

Article  CAS  PubMed  Google Scholar 

Bünning E (1936) Die endonomen Tagesrhythmen als Grundlage der photoperiodischen Reaktion. Ber Dtsch Bot Ges 54:590–607

Article  Google Scholar 

Calebe PM, Carreira D, Pedrosa F, Beca G, Lautenschlager L, Akkawia P, Bercê W, Ferraz KMPMB, Galetti M (2020) Landscape of human fear in Neotropical rainforest mammals. Biol Cons. https://doi.org/10.1016/j.biocon.2019.108257

Article  Google Scholar 

Chmura HE, Duncan C, Burrell G, Barnes BM, Buck CL, Williams CT (2023) Climate change is altering the physiology and phenology of an arctic hibernator. Science 380(6647):846. https://doi.org/10.1126/science.adf5341

Article  CAS  PubMed  Google Scholar 

Daan S, Aschoff J (1975) Circadian rhythms of locomotor activity in captive birds and mammals: their variations with season and latitude. Oecologia 18:269–316. https://doi.org/10.1007/BF00345851

Article  PubMed  Google Scholar 

Daan S, Pittendrigh CS (1976a) A functional analysis of circadian pacemakers in nocturnal rodents: II. The variability of phase response curves. J Comp Physiol A 106:253–266. https://doi.org/10.1007/BF01417857

Article  Google Scholar 

Daan S, Pittendrigh CS (1976b) A functional analysis of circadian pacemakers in nocturnal rodents: III Heavy water and constant light: homeostasis of frequency? J Comp Physiol A 106:267–290. https://doi.org/10.1007/BF01417858

Article  Google Scholar 

Dardente H, Wood S, Ebling F, Sáenz de Miera C (2019) An integrative view of mammalian seasonal neuroendocrinology. J Neuroendocrinol 31(5):e12729. https://doi.org/10.1111/jne.12729

Article  CAS  PubMed  Google Scholar 

Dark J, Pickard GE, Zucker I (1985) Persistence of circannual rhythms in ground squirrels with lesions of the suprachiasmatic nuclei. Brain Res 322:201–207. https://doi.org/10.1016/0006-8993(85)90589-x

Article  Google Scholar 

DeCoursey P (1986) Light sampling behaviour in photoentrainment of a rodent circadian system. J Comp Physiol A 159:161–169. https://doi.org/10.1007/BF00612299

Article  CAS  PubMed  Google Scholar 

Dominoni DM, Åkesson S, Klaassen R, Spoelstra K, Bulla M (2017) Methods in field chronobiology. Philos Trans R Soc B Biol Sci 372(1734):20160247. https://doi.org/10.1098/rstb.2016.0247

Article  Google Scholar 

Flôres DEFL, Oda GA (2018) Novel light/dark regimens with minimum light promote circadian disruption: simulations with a model oscillator. J Biol Rhythms 34(1):105–110. https://doi.org/10.1177/0748730418820727

Article  PubMed  Google Scholar 

Flôres DEFL, Oda GA (2020) Quantitative study of dual-oscillator models under different skeleton photoperiods. J Biol Rhythms 35(3):302–316. https://doi.org/10.1177/0748730420901939

Article  PubMed  Google Scholar 

Flôres DEFL, Tomotani BM, Tachinardi P, Oda GA, Valentinuzzi VS (2013) Modeling natural photic entrainment in a subterranean rodent (Ctenomys aff. knighti), the tuco-tuco. PLoS ONE 8(7):e68243. https://doi.org/10.1371/journal.pone.0068243

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flôres DEFL, Jannetti M, Valentinuzzi VS, Oda GA (2016) Entrainment of circadian rhythms to irregular light/dark cycles: a subterranean perspective. Sci Rep 6:34264. https://doi.org/10.1038/srep34264

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flôres DEFL, Jannetti MG, Improta GC, Tachinardi P, Valentinuzzi VS, Oda GA (2021) Telling the seasons underground: the circadian clock and ambient temperature shape light exposure and photoperiodism in a subterranean rodent. Front Physiol 12:738471. https://doi.org/10.3389/fphys.2021.738471

Article  PubMed  PubMed Central  Google Scholar 

Gaynor KM, Hojnowski CE, Carter NH, Brashares JS (2018) The influence of human disturbance on wildlife nocturnality. Science 360(6394):1232–1235. https://doi.org/10.1126/science.aar7121

Article  CAS  PubMed  Google Scholar 

Goldman BD, Goldman SL, Riccio AP, Terkel J (1997) Circadian patterns of locomotor activity and body temperature in blind mole-rats Spalax ehrenbergi. J Biol Rhythms 12(4):348–361. https://doi.org/10.1177/074873049701200407

Article  CAS  PubMed  Google Scholar 

Halle S, Stenseth NC (2000) Activity patterns in small mammals—an ecological approach. Springer, Berlin

Book  Google Scholar 

Houben T, Deboer T, van Oosterhout F, Meijer JH (2009) Correlation with behavioral activity implies circadian regulation by SCN neuronal activity levels. J Biol Rhythms 24(6):477–487. https://doi.org/10.1177/0748730409349895

Article  PubMed  Google Scholar 

Hut RA, van Oort BEH, Daan S (1999) Natural entrainment without dawn and dusk: the case of the European ground squirrel (Spermophilus citellus). J Biol Rhythms 14:290–299. https://doi.org/10.1177/074873099129000704

Article  CAS  PubMed  Google Scholar 

Hut RA, Kronfeld-Schor N, van der Vinne V, De la Iglesia H (2012) In search of a temporal niche. Prog Brain Res 199:281–304. https://doi.org/10.1016/b978-0-444-59427-3.00017-4

Article  PubMed  Google Scholar 

Ikegami K, Yoshimura T (2012) Circadian clocks and the measurement of daylength in seasonal reproduction. Mol Cell Endocrinol 349:76–81. https://doi.org/10.1016/j.mce.2011.06.040

Article  CAS  PubMed  Google Scholar 

Improta GC, Flôres DEFL, Oda GA, Valentinuzzi VS (2022) Daylength shapes entrainment patterns to artificial photoperiods in a subterranean rodent. J Biol Rhythms. https://doi.org/10.1177/07487304221085105

Article  PubMed  Google Scholar 

Jannetti MG (2018) Sazonalidade dos padrões diários de atividade de superfí­cie em um roedor subterrâneo, o tuco-tuco. Dissertação de Mestrado, Instituto de Biociências, Universidade de São Paulo, São Paulo

Google Scholar 

Jannetti MG, Buck CL, Valentinuzzi VS, Oda GA (2019) Day and night in the subterranean: measuring daily activity patterns of subterranean rodents (Ctenomys aff. knighti) using bio-logging. Cons Physiol 7:coz044. https://doi.org/10.1093/conphys/coz044

Article  Google Scholar 

Jannetti MG, Tachinardi P, Oda GA, Valentinuzzi VS (2023) Temporal dissociation between activity and body temperature rhythms of a subterranean rodent (Ctenomys famosus) in field enclosures. J Biol Rhythms 38:074873042311547. https://doi.org/10.1177/07487304231154715

Article  Google Scholar 

Kaczmarek JL, Thompson SV, Holscher HD (2017) Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health. Nutr Rev 75(9):673–682. https://doi.org/10.1093/nutrit/nux036

Article  PubMed  PubMed Central  Google Scholar 

Kenagy GJ (1976) The periodicity of daily activity and its seasonal changes in free-ranging and captive kangaroo rats. Oecologia 24:105–140. https://doi.org/10.1007/BF00572754

Article  CAS  PubMed  Google Scholar 

Kenagy GJ, Nespolo RF, Vásquez RA, Bozinovic F (2002) Daily and seasonal limits of time and temperature on the activity of degus. Rev Chil Hist Nat 75:567–581. https://doi.org/10.4067/S0716-078X2002000300008

Article  Google Scholar 

Kronfeld-Schor N, Bloch G, Schwartz WJ (2013) Animal clocks: when science meets nature. Proc R Soc B 280:20131354. https://doi.org/10.1098/rspb.2013.1354

Article  PubMed  PubMed Central  Google Scholar 

Leise TL, Harrington ME, Molyneux PC, Song I, Queenan H, Zimmerman E, Lall GS, Biello SM (2013) Voluntary exercise can strengthen the circadian system in aged mice. Age 35:2137–2152. https://doi.org/10.1007/s11357-012-9502-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levy O, Dayan T, Kronfeld-Schor N (2007) The relationship between the golden spiny mouse circadian system and its diurnal activity: an experimental field enclosures and laboratory study. Chron Int 24:599–613. https://doi.org/10.1080/07420520701534640

Article  Google Scholar 

Long RA, Martin TJ, Barnes BM (2005) Body temperature and activity patterns in free-living arctic ground squirrels. J Mammal 86:314–322. https://doi.org/10.1644/BRG-224.1

Article  Google Scholar 

Nakane Y, Yoshimura T (2019) Photoperiodic regulation of reproduction in vertebrates. Annu Rev Anim Biosci 7:173–194. https://doi.org/10.1146/annurev-animal-020518-115216

Article 

留言 (0)

沒有登入
gif