Virtual reality as a countermeasure for astronaut motion sickness during simulated post-flight water landings

Agrawal Y, Carey JP, Hoffman HJ, Sklare DA, Schubert MC (2011) The modified romberg balance test: normative data in U.S. Adults. Otology & Neurotology 32(8):1309. https://doi.org/10.1097/MAO.0b013e31822e5bee

Article  Google Scholar 

Albery WB, Martin ET (1996) Development of space motion sickness in a ground-based human centrifuge. Acta Astronaut 38(9):721–731. https://doi.org/10.1016/0094-5765(96)00011-2

Article  CAS  PubMed  Google Scholar 

Allred AR, Kravets VG, Ahmed N, Clark TK (2023) Modeling orientation perception adaptation to altered gravity environments with memory of past sensorimotor states. Frontiers in Neural Circuits 17:1190582. https://doi.org/10.3389/fncir.2023.1190582

Article  PubMed  PubMed Central  Google Scholar 

Bagian JP (1991) First intramuscular administration in the U.S. Space program. J Clin Pharmacol 31(10):920. https://doi.org/10.1002/j.1552-4604.1991.tb03649.x

Article  CAS  PubMed  Google Scholar 

Bagian JP, Ward DF (1994) A retrospective study of promethazine and its failure to produce the expected incidence of sedation during space flight. J Clin Pharmacol 34(6):649–651. https://doi.org/10.1002/j.1552-4604.1994.tb02019.x

Article  CAS  PubMed  Google Scholar 

Beltran, N. E., Bollinger, A., Duplechin, R., Wang, Z., Daniels, V. R., Reschke, M. F., & Wood, S. J. (2022). Optimizing the Combination of Intranasal Scopolamine and Sensory Augmentation to Mitigate G-Transition Induced Motion Sickness and Enhance Sensorimotor Performance. Human Research Program Investigators’ Workshop. https://ntrs.nasa.gov/citations/20220001874

Bermúdez Rey MC, Clark TK, Merfeld DM (2017) Balance screening of vestibular function in subjects aged 4 years and older: a living laboratory experience. Front Neurol. https://doi.org/10.3389/fneur.2017.00631

Article  PubMed  PubMed Central  Google Scholar 

Bles W, de Graaf B (1993) Postural consequences of long duration centrifugation. J Vestibular Res Equilibrium Orientation https://www.semanticscholar.org/paper/Postural-consequences-of-long-duration-Bles-Graaf/2a3ea3861b6e5cc10d9720e269e390f31d6269e5

Bles W, Graaf B de , Bos JE (1996) Space adaptation syndrome (SAS) and sickness induced by centrifugation (SIC): Vestibular consequences of earth anomalous gravity. J Vestib Res 4 Supplement 1; S(6), S66

Bles W, de Graaf B, Bos JE, Groen E, Krol JR (1997) A sustained hyper-g load as a tool to simulate space sickness. J Gravit Physiol 4(2):1–4

Google Scholar 

Bos JE, MacKinnon SN, Patterson A (2005) Motion sickness symptoms in a ship motion simulator. Effects Inside Outside No View 76(12):8

Google Scholar 

Bos JE, Diels C, Souman JL (2022) Beyond seasickness: a motivated call for a new motion sickness standard across motion environments. Vibration. https://doi.org/10.3390/vibration5040044

Article  Google Scholar 

Bretl KN, Clark TK (2020) Improved feasibility of astronaut short-radius artificial gravity through a 50-day incremental, personalized, vestibular acclimation protocol. Npj Microgravity. https://doi.org/10.1038/s41526-020-00112-w

Article  PubMed  PubMed Central  Google Scholar 

Bretl KN, Clark TK (2022) Predicting individual acclimation to the cross-coupled illusion for artificial gravity. J Vestib Res 32(4):305–316. https://doi.org/10.3233/VES-210019

Article  PubMed  Google Scholar 

Bretl KN, McCusker AT, Sherman SO, Mitchell TR, Dixon JB, Clark TK (2019) Tolerable acclimation to the cross-coupled illusion through a 10-day, incremental, personalized protocol. J Vestibular Res Equilib Orientat 29(2/3):97–110. https://doi.org/10.3233/VES-190656

Article  Google Scholar 

Cha Y-H, Golding JF, Keshavarz B, Furman J, Kim J-S, Lopez-Escamez JA, Magnusson M, Yates BJ, Lawson BD (2021) Motion sickness diagnostic criteria: consensus document of the classification committee of the Bárány society. J Vestib Res 31(5):327–344. https://doi.org/10.3233/VES-200005

Article  PubMed  PubMed Central  Google Scholar 

Clément GR, Boyle RD, George KA, Nelson GA, Reschke MF, Williams TJ, Paloski WH (2020) Challenges to the central nervous system during human spaceflight missions to Mars. J Neurophysiol 123(5):2037–2063. https://doi.org/10.1152/jn.00476.2019

Article  PubMed  Google Scholar 

Cowings PS, Toscano WB, DeRoshia C, Miller NE (2000) Promethazine as a motion sickness treatment: impact on human performance and mood states. Aviat Space Environ Med 71(10):1013–1022

CAS  PubMed  Google Scholar 

Davis JR, Jennings RT, Beck BG (1993a) Comparison of treatment strategies for space motion sickness. Acta Astronaut 29(8):587–591. https://doi.org/10.1016/0094-5765(93)90074-7

Article  CAS  PubMed  Google Scholar 

Davis JR, Jennings RT, Beck BG, Bagian JP (1993b) Treatment efficacy of intramuscular promethazine for space motion sickness. Aviat Space Environ Med 64(3 Pt 1):230–233

CAS  PubMed  Google Scholar 

Davis S, Nesbitt K, Nalivaiko E (2014) A systematic review of cybersickness. Proc Conf Interactive Entertain. https://doi.org/10.1145/26777582677780

Article  Google Scholar 

Dervay, J. (2023). NASA Commercial Crew Program and Medical Operational Challenges. 2023 Aerospace Medical Association Conference.

Fetsch CR, Turner AH, DeAngelis GC, Angelaki DE (2009) Dynamic reweighting of visual and vestibular cues during self-motion perception. J Neurosci 29(49):15601–15612. https://doi.org/10.1523/JNEUROSCI.2574-09.2009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Golding JF (1998) Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Res Bull 47(5):507–516. https://doi.org/10.1016/S0361-9230(98)00091-4

Article  CAS  PubMed  Google Scholar 

Golding JF (2006) Predicting individual differences in motion sickness susceptibility by questionnaire. Personality Individ Differ 41(2):237–248. https://doi.org/10.1016/j.paid.2006.01.012

Article  Google Scholar 

Golding JF, Paillard AC, Normand H, Besnard S, Denise P (2017) Prevalence, predictors, and prevention of motion sickness in zero-G parabolic flights. Aerospace Med Hum Perform 88(1):3–9. https://doi.org/10.3357/AMHP.4705.2017

Article  Google Scholar 

Gorgiladze GI, Brianov II (1989) Space motion sickness. Kosm Biol Aviakosm Med 23(3):4–14

CAS  PubMed  Google Scholar 

Graybiel A, Knepton J (1976) Sopite syndrome: a sometimes sole manifestation of motion sickness. Aviat Space Environ Med 47(8):873–882

CAS  PubMed  Google Scholar 

Graybiel A, Lackner JR (1987) Treatment of severe motion sickness with antimotion sickness drug injections. Aviat Space Environ Med 58(8):773–776

CAS  PubMed  Google Scholar 

Griffin MJ, Newman MM (2004) Visual field effects on motion sickness in cars. Aviat Space Environ Med 75(9):10

Google Scholar 

Groen E, de Graaf B, Bles W, Bos JE (1996) Ocular torsion before and after 1 hour centrifugation. Brain Res Bull 40(5):331–333. https://doi.org/10.1016/0361-9230(96)00125-6

Article  CAS  PubMed  Google Scholar 

Gupta AK, Kumar BV, Rajguru R, Parate K (2021) Assessment of sea sickness in naval personnel: incidence and management. Ind J Occup Environ Med 25(2):119–124. https://doi.org/10.4103/ijoem.IJOEM_94_20

Article  Google Scholar 

Heer M, Paloski WH (2006) Space motion sickness: incidence, etiology, and countermeasures. Auton Neurosci 129(1):77–79. https://doi.org/10.1016/j.autneu.2006.07.014

Article  PubMed  Google Scholar 

Héroux ME, Law TCY, Fitzpatrick RC, Blouin J-S (2015) Cross-modal calibration of vestibular afference for human balance. PLoS ONE 10(4):e0124532. https://doi.org/10.1371/journal.pone.0124532

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hock, P., Benedikter, S., Gugenheimer, J., & Rukzio, E. (2017). CarVR: Enabling In-Car Virtual Reality Entertainment. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 4034–4044. https://doi.org/10.1145/3025453.3025665

Hupfeld KE, McGregor HR, Koppelmans V, Beltran NE, Kofman IS, De Dios YE, Riascos RF, Reuter-Lorenz PA, Wood SJ, Bloomberg JJ, Mulavara AP, Seidler RD (2022) Brain and behavioral evidence for reweighting of vestibular inputs with long-duration spaceflight. Cereb Cortex 32(4):755–769. https://doi.org/10.1093/cercor/bhab239

Article  CAS  PubMed  Google Scholar 

Irmak T, de Winkel KN, Pool DM, Bülthoff HH, Happee R (2021) Individual motion perception parameters and motion sickness frequency sensitivity in fore-aft motion. Exp Brain Res 239(6):1727–1745. https://doi.org/10.1007/s00221-021-06093-w

Article  PubMed  PubMed Central  Google Scholar 

Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG (1993) Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int J Aviat Psychol 3(3):203. https://doi.org/10.1207/s15327108ijap0303_3

Article  Google Scholar 

Kravets VG, Dixon JB, Ahmed NR, Clark TK (2021) COMPASS: computations for orientation and motion perception in altered sensorimotor states. Frontiers in Neural Circuits. https://doi.org/10.3389/fncir.2021.757817

Article  PubMed  PubMed Central  Google Scholar 

Krueger WWO (2011) Controlling motion sickness and spatial disorientation and enhancing vestibular rehabilitation with a user-worn see-through display. Laryngoscope 121(S2):S17–S35. https://doi.org/10.1002/lary.21373

Article  PubMed  PubMed Central  Google Scholar 

Lackner JR (2014) Motion sickness: More than nausea and vomiting. Exp Brain Res 232(8):2493–2510. https://doi.org/10.1007/s00221-014-4008-8

Article  PubMed  PubMed Central  Google Scholar 

Lackner JR, DiZio P (2006) Space motion sickness. Exp Brain Res 175(3):377–399. https://doi.org/10.1007/s00221-006-0697-y

Article  PubMed  Google Scholar 

Lackner JR, Graybiel A (1987) Head movements in low and high gravitoinertial force environments elicit motion sickness: implications for space motion sickness. Aviat Space Environ Med 58(9 Pt 2):A212–A217

留言 (0)

沒有登入
gif