Verification of optimal conditions for the scattering correction of 123I-FP-CIT SPECT on a single-photon emission tomography system with a two-detector whole-body cadmium–zinc–telluride semiconductor detector

Booij J, Tissingh G, Boer GJ, Speelman JD, Stoof JC, JanssenAG WEC, Van Royen E. [123I] FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997;62:133–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Booij J, Speelman JD, Horstink MW, Wolters EC. The clinical benefit of imaging striatal dopamine transporters with [123I] FP-CIT SPET in differentiating patients with presynaptic Parkinsonism from those with other forms of Parkinsonism. Eur J Nucl Med. 2001;28:266–72.

Article  CAS  PubMed  Google Scholar 

Schwarz J, Linke R, Kerner M, Mozley PD, Trenkwalder C, Gasser T, Tatsch K. Striatal dopamine transporter binding assessed by [I-123]IPT and single photon emission computed tomography in patients with early Parkinson’s disease: implications for a preclinical diagnosis. Arch Neurol. 2000;57:205–8.

Article  CAS  PubMed  Google Scholar 

Benamer HT, Patterson J, Grosset DG, Booij J, De Bruin K, Van Royen E, Speelman JD, Horstink MHIM, Sips HJWA, Dierckx RA, Versijpt J, Decoo D, Van Der Linden C, Hadley DM, Doder M, Lees AJ, Costa DC, Gacinovic S, Oertel WH, Pogarell O, Hoeffken H, Joseph K, Tatsch K, Schwarz J, Ries V. Accurate differentiation of Parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord. 2000;15:503–10.

Article  CAS  PubMed  Google Scholar 

Tissingh G, Booij J, Bergmans P, Winogrodzka A, Janssen AG, van Royen EA, Stoof JC, Wolters EC. Iodine-123-N-omega-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)tropane SPECT in healthy controls and early-stage, drug-naive Parkinson’s disease. J Nucl Med. 1998;39:1143–8.

CAS  PubMed  Google Scholar 

Catafau AM, Tolosa E, DaTSCAN Clinically uncertain parkinsonian syndromes study group. Impact of dopamine transporter SPECT using 123I-ioflupane on diagnosis and management of patients with clinically uncertain Parkinsonian syndromes. Mov Disord. 2004;19:1175–82.

Article  PubMed  Google Scholar 

Marshall VL, Reininger CB, Marquardt M, Patterson J, Hadley DM, Oertel WH, Benamer HT, Kemp P, Burn D, Tolosa E, Kulisevsky J, Cunha L, Costa D, Booij J, Tatsch K, Chaudhuri KR, Ulm G, Pogarell O, Höffken H, Gerstner A, Grosset DG. Parkinson’s disease is overdiagnosed clinically at baseline in diagnostically uncertain cases: a 3-year European multicenter study with repeat [123I]FP-CIT SPECT. Mov Disord. 2009;24:500–8.

Article  PubMed  Google Scholar 

Habraken JB, Booij J, Slomka P, Sokole EB, van Royen EA. Quantification and visualization of defects of the functional dopaminergic system using an automatic algorithm. J Nucl Med. 1999;40:1091–7.

CAS  PubMed  Google Scholar 

Radau P, Linke R, Slomka PJ, Tatsch K. Optimization of automated quantification of 123I-IBZM uptake in the striatum applied to Parkinsonism. J Nucl Med. 2000;41:220–7.

CAS  PubMed  Google Scholar 

Djang DS, Janssen MJ, Bohnen N, Booij J, Henderson TA, Herholz K, Minoshima S, Rowe CC, Sabri O, Seibyl J, Van Berckel BN. SNM practice guideline for dopamine transporter imaging with 123I-ioflupane SPECT 1.0. J Nucl Med. 2012;53:154–63.

Article  CAS  PubMed  Google Scholar 

Tossici-Bolt L, Hoffmann SM, Kemp PM, Kemp PM, Mehta RL, Fleming JS. Quantification of [123I]FP-CIT SPECT brain images: an accurate technique for measurement of the specific binding ratio. Eur J Nucl Med Mol Imaging. 2006;33:1491–9.

Article  PubMed  Google Scholar 

Ito T, Matsusaka Y, Onoguchi M, Ichikawa H, Okuda K, Shibutani T, Shishido M, Sato K. Experimental evaluation of the GE NM/CT 870 CZT clinical SPECT system equipped with WEHR and MEHRS collimator. J Appl Clin Med Phys. 2021;22:165–77.

Article  PubMed  PubMed Central  Google Scholar 

Axelsson B, Msaki P, Israelsson A. Subtraction of Compton-scattered photons in single-photon emission computerized tomography. J Nucl Med. 1984;25:490–4.

CAS  PubMed  Google Scholar 

Ljungberg M, Strand SE. Scatter and attenuation correction in SPECT using density maps and Monte Carlo simulated scatter functions. J Nucl Med. 1990;31:1560–7.

CAS  PubMed  Google Scholar 

Meikle SR, Hutton BF, Bailey DL. A transmission-dependent method for scatter correction in SPECT. J Nucl Med. 1994;35:360–7.

CAS  PubMed  Google Scholar 

Jaszczak RJ, Greer KL, Floyd CE, Harris CC, Coleman RE. Improved SPECT quantification using compensation for scattered photons. J Nucl Med. 1984;25:893–900.

CAS  PubMed  Google Scholar 

Hademenos GJ, Ljungberg M, King MA, Glick SJ. A Monte Carlo investigation of the dual photopeak window scatter correction method. IEEE Trans Nucl Sci. 1993;40:179–85.

Article  CAS  Google Scholar 

Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton scatter correction in single photon emission CT. IEEE Trans Med lmag. 1991;10:408–12.

Article  CAS  Google Scholar 

Ichihara T, Ogawa K, Motomura N, Kubo A, Hashimoto S. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT. J Nucl Med. 1993;34:2216–21.

CAS  PubMed  Google Scholar 

Takayama T, Ichihara T, Motomura N, Ogawa K. Determination of energy window width and position for the triple energy window (TEW) scatter compensation method. Kaku Igaku. 1998;35:51–9.

CAS  PubMed  Google Scholar 

Mueller B, O’Connor MK, Blevis I, Rhodes DJ, Smith R, Collins DA, Phillips SW. Evaluation of a small cadmium zinc telluride detector for scintimammography. J Nucl Med. 2003;44:602–9.

CAS  PubMed  Google Scholar 

Holstensson M, Erlandsson K, Poludniowski G, Ben-Haim S, Hutton BF. Model-based correction for scatter and tailing effects in simultaneous 99mTc and 123I imaging for a CdZnTe cardiac SPECT camera. Phys Med Biol. 2015;60:3045–63.

Article  CAS  PubMed  Google Scholar 

Takahashi T, Watanabe S. Recent progress in CdTe and CdZnTe detectors. IEEE Trans Nucl Sci. 2001;48:950–9.

Article  CAS  Google Scholar 

Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

Article  CAS  PubMed  Google Scholar 

Matsuda H, Murata M, Mukai Y, Sako K, Ono H, Toyama H, Inui Y, Taki Y, Shimomura H, Nagayama H, Tateno A, Ono K, Murakami H, Kono A, Hirano S, Kuwabara S, Maikusa N, Ogawa M, Imabayashi E, Sato N, Takano H, Hatazawa J, Takahashi R. Japanese multicenter database of healthy controls for [123I]FP-CIT SPECT. Eur J Nucl Med Mol Imaging. 2018;45:1405–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsutomo N, Nagaki A, Yamao F, Sasaki M. Optimization of iterative reconstruction parameters with 3-dimensional resolution recovery, scatter and attenuation correction in 123I-FP-CIT SPECT. Ann Nucl Med. 2015;29:636–42.

Article  CAS  PubMed  Google Scholar 

Maeda Y, Nagaki A, Komi Y, Abe N, Kashimura S. Evaluation of resolution correction in single photon emission computed tomography reconstruction method using a body phantom: study of three different models. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2015;71:1070–9.

Article  CAS  PubMed  Google Scholar 

Johannes T, Michael L. Characterization of noise and resolution for quantitative 177Lu SPECT/CT with xSPECT Quant. J Nucl Med. 2015;60:50–9.

Google Scholar 

Kameiyama H, Matsutomo N, Nagaki A, Yamao F. Effect of reconstruction strategies for the quantification and diagnostic accuracy of (123)I-FP-CIT SPECT. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2016;72:595–601.

Article  PubMed  Google Scholar 

Reilhac A, Tomeï S, Buvat I, Michel C, Keheren F, Costes N. Simulation-based evaluation of OSEM iterative reconstruction methods in dynamic brain PET studies. Neuroimage. 2008;39:359–68.

Article  PubMed  Google Scholar 

Koch W, Hamann C, Welsch J, Pöpperl G, Radau PE, Tatsch K. Is iterative reconstruction an alternative to filtered backprojection in routine processing of dopamine transporter SPECT studies? J Nucl Med. 2005;46:1804–11.

PubMed  Google Scholar 

Sheehy N, Tetrault TA, Zurakowski D, Vija AH, Fahey FH, Treves ST. Pediatric 99mTc-DMSA SPECT performed by using iterative reconstruction with isotropic resolution recovery: improved image quality and reduced radiopharmaceutical activity. Radiology. 2009;251:511–6.

Article  PubMed  Google Scholar 

Pareto D, Cot A, Pavı´a J, Falco´n C, Juvells I, Lomen˜a F, Ros D. Iterative reconstruction with correction of the spatially variant fan-beam collimator response in neurotransmission SPET imaging. Eur J Nucl Med Mol Imaging. 2003;30:1322–9.

Winz OH, Hellwig S, Mix M, Weber WA, Mottaghy FM, Schäfer WM, Meyer PT. Image quality and data quantification in dopamine transporter SPECT: advantage of 3-dimensional OSEM reconstruction? Clin Nucl Med. 2012;37:866–71.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif