Applications of Modeling and Simulation Approaches in Support of Drug Product Development of Oral Dosage Forms and Locally Acting Drug Products: a Symposium Summary

Zhao P, Zhang L, Grillo JA, Liu Q, Bullock JM, Moon YJ, et al. Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin Pharmacol Ther. 2011;89(2):259–67.

Article  CAS  PubMed  Google Scholar 

Zhang X, Yang Y, Grimstein M, Fan J, Grillo JA, Huang SM, et al. Application of PBPK modeling and simulation for regulatory decision making and its impact on US prescribing information: an update on the 2018–2019 submissions to the US FDA’s Office of Clinical Pharmacology. J Clin Pharmacol. 2020;60(Suppl 1):S160–78.

CAS  PubMed  Google Scholar 

Wagner C, Zhao P, Pan Y, Hsu V, Grillo J, Huang SM, et al. Application of physiologically based pharmacokinetic (PBPK) modeling to support dose selection: report of an FDA public workshop on PBPK. CPT Pharmacometrics Syst Pharmacol. 2015;4(4):226–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoon M, Babiskin A, Hu M, Wu F, Raney SG, Fang L, et al. Increasing impact of quantitative methods and modeling in establishment of bioequivalence and characterization of drug delivery. CPT Pharmacometrics Syst Pharmacol. 2023;12(5):552–5.

Lin W, Chen Y, Unadkat JD, Zhang X, Wu D, Heimbach T. Applications, challenges, and outlook for PBPK modeling and simulation: a regulatory, industrial and academic perspective. Pharm Res. 2022;39(8):1701–31.

Article  CAS  PubMed  Google Scholar 

Maharaj AR, Edginton AN. Physiologically based pharmacokinetic modeling and simulation in pediatric drug development. CPT Pharmacometrics Syst Pharmacol. 2014;3(11): e150.

Article  CAS  PubMed  Google Scholar 

Anand O. Clinically relevant dissolution specifications: a biopharmaceutics’ risk based approach: an FDA perspective. The Academy of Pharmaceutical Sciences. Webinar Series. May 18, 2021. [Available from: https://www.apsgb.co.uk/wp-content/uploads/2021/05/Clinically-Relevant-Dissolution-Specifications-an-FDA-Perspective-__Om-Anand.pdf. Accessed 24 Jul 2023.

Mitra A, Suarez-Sharp S, Pepin XJH, Flanagan T, Zhao Y, Kotzagiorgis E, et al. Applications of physiologically based biopharmaceutics modeling (PBBM) to support drug product quality: a workshop summary report. J Pharm Sci. 2021;110(2):594–609.

Article  CAS  PubMed  Google Scholar 

Zhang X, Duan J, Kesisoglou F, Novakovic J, Amidon GL, Jamei M, et al. Mechanistic oral absorption modeling and simulation for formulation development and bioequivalence evaluation: report of an FDA public workshop. CPT Pharmacometrics Syst Pharmacol. 2017;6(8):492–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al Shoyaib A, Riedmaier AE, Kumar A, Roy P, Parrott NJ, Fang L, et al. Regulatory utility of physiologically based pharmacokinetic modeling for assessing food impact in bioequivalence studies: a workshop summary report. CPT Pharmacometrics Syst Pharmacol. 2023;12(5):610–8.

The use of physiologically based pharmacokinetic analyses — biopharmaceutics applications for oral drug product development, manufacturing changes, and controls. Guidance for Industry. U.S. Department of Health and Human Services. Food and Drug Administration. Center for Drug Evaluation and Research (CDER) October 2020 Pharmaceutical Quality/CMC [Available from: https://www.fda.gov/media/142500/download. Accessed 24 Jul 2023.

Tsakalozou E, Babiskin A, Zhao L. Physiologically-based pharmacokinetic modeling to support bioequivalence and approval of generic products: a case for diclofenac sodium topical gel, 1. CPT Pharmacometrics Syst Pharmacol. 2021;10(5):399–411.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao L, Seo P, Lionberger R. Current scientific considerations to verify physiologically-based pharmacokinetic models and their implications for locally acting products. CPT Pharmacometrics Syst Pharmacol. 2019;8(6):347–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Le Merdy M, Tan ML, Babiskin A, Zhao L. Physiologically based pharmacokinetic model to support ophthalmic suspension product development. AAPS J. 2020;22(2):26.

Article  PubMed  Google Scholar 

Babiskin A, Wu F, Mousa Y, Tan ML, Tsakalozou E, Walenga RL, et al. Regulatory utility of mechanistic modeling to support alternative bioequivalence approaches: a workshop overview. CPT Pharmacometrics Syst Pharmacol. 2023;12(5):619–23.

Lee J, Gong Y, Bhoopathy S, DiLiberti CE, Hooker AC, Rostami-Hodjegan A, et al. Public workshop summary report on Fiscal Year 2021 Generic Drug Regulatory Science Initiatives: data analysis and model-based bioequivalence. Clin Pharmacol Ther. 2021;110(5):1190–5.

Article  PubMed  Google Scholar 

Wang Y, Zhu H, Madabushi R, Liu Q, Huang SM, Zineh I. Model-informed drug development: current US regulatory practice and future considerations. Clin Pharmacol Ther. 2019;105(4):899–911.

Article  PubMed  Google Scholar 

Suarez-Sharp S, Li M, Duan J, Shah H, Seo P. Regulatory experience with in vivo in vitro correlations (IVIVC) in new drug applications. AAPS J. 2016;18(6):1379–90.

Article  CAS  PubMed  Google Scholar 

Yuvaneshwari K, Kollipara S, Ahmed T, Chachad S. Applications of PBPK/PBBM modeling in generic product development: an industry perspective. Journal of Drug Delivery Science and Technology. 2022;69: 103152.

Article  Google Scholar 

Wu F, Shah H, Li M, Duan P, Zhao P, Suarez S, et al. Biopharmaceutics applications of physiologically based pharmacokinetic absorption modeling and simulation in regulatory submissions to the U.S. Food and Drug Administration for new drugs. AAPS J. 2021;23(2):31.

Heimbach T, Kesisoglou F, Novakovic J, Tistaert C, Mueller-Zsigmondy M, Kollipara S, et al. Establishing the bioequivalence safe space for immediate-release oral dosage forms using physiologically based biopharmaceutics modeling (PBBM): case studies. J Pharm Sci. 2021;110(12):3896–906.

Article  CAS  PubMed  Google Scholar 

Heimbach T, Suarez-Sharp S, Kakhi M, Holmstock N, Olivares-Morales A, Pepin X, et al. Dissolution and translational modeling strategies toward establishing an in vitro-in vivo link-a workshop summary report. AAPS J. 2019;21(2):29.

Article  PubMed  Google Scholar 

Wu D, Sanghavi M, Kollipara S, Ahmed T, Saini AK, Heimbach T. Physiologically based pharmacokinetics modeling in biopharmaceutics: case studies for establishing the bioequivalence safe space for innovator and generic drugs. Pharm Res. 2023;40(2):337–57.

Article  CAS  PubMed  Google Scholar 

Laisney M, Heimbach T, Mueller-Zsigmondy M, Blumenstein L, Costa R, Ji Y. Physiologically based biopharmaceutics modeling to demonstrate virtual bioequivalence and bioequivalence safe-space for ribociclib which has permeation rate-controlled absorption. J Pharm Sci. 2022;111(1):274–84.

Article  CAS  PubMed  Google Scholar 

Wu D, Li M. Current state and challenges of physiologically based biopharmaceutics modeling (PBBM) in oral drug product development. Pharm Res. 2023;40(2):321–36.

Article  CAS  PubMed  Google Scholar 

Kesisoglou F, Vertzoni M, Reppas C. Physiologically based absorption modeling of salts of weak bases based on data in hypochlorhydric and achlorhydric biorelevant media. AAPS PharmSciTech. 2018;19(7):2851–8.

Article  CAS  PubMed  Google Scholar 

O’Shea JP, Holm R, O’Driscoll CM, Griffin BT. Food for thought: formulating away the food effect - a PEARRL review. J Pharm Pharmacol. 2019;71(4):510–35.

Article  PubMed  Google Scholar 

Jankovsky C, Tsinman O, Thakral NK. Food effect risk assessment in preformulation stage using material sparing muFLUX methodology. ADMET DMPK. 2022;10(4):299–314.

PubMed  PubMed Central  Google Scholar 

Zhang G, Wang C, Wu L, Xu J, Hu X, Shakya S, et al. Identification of beagle food taking patterns and protocol for food effects evaluation on bioavailability. Sci Rep. 2018;8(1):12765.

Article  PubMed  PubMed Central  Google Scholar 

Fadda HM, Hellstrom PM, Webb DL. Intra- and inter-subject variability in gastric pH following a low-fat, low-calorie meal. Int J Pharm. 2022;625: 122069.

Article  CAS  PubMed  Google Scholar 

Parrott N, Stillhart C, Lindenberg M, Wagner B, Kowalski K, Guerini E, et al. Physiologically based absorption modelling to explore the impact of food and gastric pH changes on the pharmacokinetics of entrectinib. AAPS J. 2020;22(4):78.

Article  CAS  PubMed  Google Scholar 

Koziolek M, Alcaro S, Augustijns P, Basit AW, Grimm M, Hens B, et al. The mechanisms of pharmacokinetic food-drug interactions - a perspective from the UNGAP group. Eur J Pharm Sci. 2019;134:31–59.

Article  CAS  PubMed  Google Scholar 

Braeckmans M, Augustijns P, Mols R, Servais C, Brouwers J. Investigating the mechanisms behind the positive food effect of abiraterone acetate: in vitro and rat in situ studies. Pharmaceutics. 2022;14(5):952.

Yasuji T, Kondo H, Sako K. The effect of food on the oral bioavailability of drugs: a review of current developments and pharmaceutical technologies for pharmacokinetic control. Ther Deliv. 2012;3(1):81–90.

Article  CAS  PubMed  Google Scholar 

Gataric B, Parojcic J. An investigation into the factors governing drug absorption and food effect prediction based on data mining methodology. AAPS J. 2019;22(1):11.

Article  PubMed  Google Scholar 

Suarez-Sharp S, Cohen M, Kesisoglou F, Abend A, Marroum P, Delvadia P, et al. Applications of clinically relevant dissolution testing: workshop summary report. AAPS J. 2018;20(6):93.

Article  PubMed  Google Scholar 

McAllister M, Flanagan T, Boon K, Pepin X, Tistaert C, Jamei M, et al. Developing clinically relevant dissolution specifications for oral drug products-industrial and regulatory perspectives. Pharmaceutics. 2019;12(1):19.

Mohamed MF, Winzenborg I, Othman AA, Marroum P. Utility of Modeling and simulation approach to support the clinical relevance of dissolution specifications: a case study from upadacitinib development. AAPS J. 2022;24(2):39.

Article  CAS  PubMed  Google Scholar 

Mohamed MF, Trueman S, Othman AA, Han JH, Ju TR, Marroum P. Development of in vitro-in vivo correlation for upadacitinib extended-release tablet formulation. AAPS J. 2019;21(6):108.

Article  PubMed  Google Scholar 

Nader A, Mohamed MF, Winzenborg I, Doelger E, Noertersheuser P, Pangan AL, et al. Exposure-response analyses of upadacitinib efficacy and safety in phase II and III studies to support benefit-risk assessment in rheumatoid arthritis. Clin Pharmacol Ther. 2020;107(4):994–1003.

Article  CAS  PubMed  Google Scholar 

Clarke JF, Thakur K, Polak S. A mechanistic physiologically based model to assess the effect of study design and modified physiology on formulation safe space for virtual bioequivalence of dermatological drug products. Front Pharmacol. 2022;13:1007496.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patel N, Clarke JF, Salem F, Abdulla T, Martins F, Arora S, et al. Multi-phase

留言 (0)

沒有登入
gif