Investigation and comparison of laser and ultrasound effects on the temperature increasing of the solutions containing graphene oxide nanoparticles for thermal treatment of osteosarcoma cancer cells

1.    Litman T, Druley TE, Stein WD, Bates SE. From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell Mol Life Sci. 2001;58(7):931-959. 
2.    Sadeghi M, Kashanian S, Naghib SM, Askari E, Haghiralsadat F, Tofighi D. A highly sensitive nanobiosensor based on aptamer-conjugated graphene-decorated rhodium nanoparticles for detection of HER2-positive circulating tumor cells. Nano Rev. 2022;11(1):793-810.
3.    Pourpirali R, Mahmoudnezhad A, Oroojalian F, Zarghami N, Pilehvar Y. Prolonged proliferation and delayed senescence of the adipose-derived stem cells grown on the electrospun composite nanofiber co-encapsulated with TiO2 nanoparticles and metformin-loaded mesoporous silica nanoparticles. Int J Pharm. 2021;604:120733.
4.    Varon LAB, Orlande HRB, Eliçabe GE. Combined parameter and state estimation problem in a complex domain: RF hyperthermia treatment using nanoparticles. J Phys Conf Ser. 2016;745(3):032014. 
5.    Motlagh NSH, Parvin P, Mirzaie ZH, Karimi R, Sanderson JH, Atyabi F. Synergistic performance of triggered drug release and photothermal therapy of MCF7 cells based on laser activated PEGylated GO + DOX. Biomed Opt Express. 2020;11(7):3783-3794. 
6.    You J, Zhang R, Xiong C, Zhong M, Melancon M, Gupta S, et al. Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Res. 2012;72(18):4777-4786. 
7.    Wu H, Lu C, Chen M. Evaluation of minimally invasive laser ablation in children with osteoid osteoma. Oncol Lett. 2017;13(1):155-158. 
8.    Rashidi A, Omidi M, Choolaei M, Nazarzadeh M, Yadegari A, Haghierosadat F, et al. Electromechanical properties of vertically aligned carbon nanotube. Adv Mater Res. 2013;705:332-346.
9.    Wood AK, Sehgal CM. A review of low-intensity ultrasound for cancer therapy. Ultrasound Med Biol. 2015;41(4):905-928. 
10.    Tu X, Ma Y, Cao Y, Huang J, Zhang M, Zhang Z. PEGylated carbon nanoparticles for efficient in vitro photothermal cancer therapy. J Mater Chem B. 2014;2(15):2184-2192. 
11.    Abdollahiyan P, Oroojalian F, Hejazi M, de la Guardia M, Mokhtarzadeh A. Nanotechnology, and scaffold implantation for the effective repair of injured organs: An overview on hard tissue engineering. J Control Release. 2021;333: 391-417.
12.    Miller DL, Smith NB, Bailey MR, Czarnota GJ, Hynynen K, Makin IR. Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med. 2012;31(4):623-634. 
13.    Yoshizawa S, Takagi R, Umemura S-i. Enhancement of High-Intensity Focused Ultrasound Heating by Short-Pulse Generated Cavitation. Appl Sci. 2017;7(3):288. 
14.    Shanei A, Tavakoli MB, Salehi H, Ebrahimi-Fard A. Evaluating the effects of ultrasound waves on MCF-7 cells in the presence of ag nanoparticles. J Isfahan Med Sch. 2016;34(389):763-768.
15.    Legay M, Gondrexon N, Le Person S, Boldo P, Bontemps A. Enhancement of heat transfer by ultrasound: review and recent advances. Int J Chem Eng. 2011;2011:670108. 
16.    Li JL, Hou XL, Bao HC, Sun L, Tang B, Wang JF, et al. Graphene oxide nanoparticles for enhanced photothermal cancer cell therapy under the irradiation of a femtosecond laser beam. J Biomed Mater Res A. 2014;102(7):2181-2188. 
17.    Johari P, Shenoy VB. Modulating Optical Properties of Graphene Oxide: Role of Prominent Functional Groups. ACS Nano. 2011;5(9):7640-7647. 
18.    Omidi M, Malakoutian M, Choolaei M, Oroojalian F, Haghiralsadat F, Yazdian F. A Label-Free detection of biomolecules using micromechanical biosensors. Chin Phys Lett. 2013;30(6):068701.
19.    Karimi MA, Dadmehr M, Hosseini M, Korouzhdehi B, Oroojalian F. Sensitive detection of methylated DNA and methyltransferase activity based on the lighting up of FAM-labeled DNA quenched fluorescence by gold nanoparticles. RSC advances. 2019;9(21):12063-12069.
20.    Yaghoubi F, Naghib SM, Motlagh NSH, Haghiralsadat F, Jaliani HZ, Tofighi D, et al. Multiresponsive carboxylated graphene oxide-grafted aptamer as a multifunctional nanocarrier for targeted delivery of chemotherapeutics and bioactive compounds in cancer therapy. Nano Rev. 2021;10(1):1838-1852.
21.    Yang K, Zhang S, Zhang G, Sun X, Lee S-T, Liu Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010;10(9):3318-3323. 
22.    Robinson JT, Tabakman SM, Liang Y, Wang H, Sanchez Casalongue H, Vinh D, et al. Ultrasmall Reduced Graphene Oxide with High Near-Infrared Absorbance for Photothermal Therapy. J Am Chem Soc. 2011;133(17):6825-6831. 
23.    Matteini P, Tatini F, Cavigli L, Ottaviano S, Ghini G, Pini R. Graphene as a photothermal switch for controlled drug release. Nanoscale. 2014;6(14):7947-7953. 
24.    Marchal C, Bey P, Metz R, Gaulard ML, Robert J. Treatment of superficial human cancerous nodules by local ultrasound hyperthermia. Br J Cancer Suppl. 1982;5:243-245. 
25.    Gelet A, Chapelon JY, Bouvier R, Pangaud C, Lasne Y. Local control of prostate cancer by transrectal high intensity focused ultrasound therapy: preliminary results. J Urol. 1999;161(1):156-162. 
26.    Kaczmarek K, Hornowski T, Dobosz B, Józefczak A. Influence of Magnetic Nanoparticles on the Focused Ultrasound Hyperthermia. Materials (Basel). 2018;11(9). Epub 20180904. 
27.    Beik J, Abed Z, Shakeri-Zadeh A, Nourbakhsh M, Shiran MB. Evaluation of the sonosensitizing properties of nano-graphene oxide in comparison with iron oxide and gold nanoparticles. Phys E: Low-Dimens Syst Nanostructures. 2016;81:308-314. 
28.    Rahimizadeh M, Eshghi H, Shiri A, Ghadamyari Z, Matin MM, Oroojalian F, et al. Fe (HSO 4) 3 as an efficient catalyst for diazotization and diazo coupling reactions. J Korean Chem Soc. 2012;56(6):716-719.
29.    Chen Y-W, Liu T-Y, Chang P-H, Hsu P-H, Liu H-L, Lin H-C, et al. A theranostic nrGO@MSN-ION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor. Nanoscale. 2016;8(25):12648-12657. 
30.    yaghoubi f, Hosseini Motlagh NS, moradi a, Haghiralsadat f. Carboxylated Graphene Oxide as a Nanocarrier for Drug Delivery of Quercetin as an Effective Anticancer Agent Iran Biomed J. 2022;26(4):324-329.
31.    Nia AH, Behnam B, Taghavi S, Oroojalian F, Eshghi H, Shier WT, et al. Evaluation of chemical modification effects on DNA plasmid transfection efficiency of single-walled carbon nanotube–succinate–polyethylenimine conjugates as non-viral gene carriers. Med Chem Comm. 2017;8(2):364-375.
32.    Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. 2008;130(33):10876-10877. 
33.    Shang J, Ma L, Li J, Ai W, Yu T, Gurzadyan GG. Femtosecond pump–probe spectroscopy of graphene oxide in water. J Phys D: Appl Physics. 2014;47(9):094008. 
34.    Liaros N, Aloukos P, Kolokithas-Ntoukas A, Bakandritsos A, Szabo T, Zboril R, et al. Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids. J Phys Chem C. 2013;117(13):6842-6850. 
35.    Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J Phys Chem B. 2006;110(17):8535-8539.
36.    Fatemi Bushehri SMM, Zarchi MS. An expert model for self-care problems classification using probabilistic neural network and feature selection approach. Appl Soft Comput. 2019;82:105545. 
37.    Sordillo LA, Pu Y, Pratavieira S, Budansky Y, Alfano RR. Deep optical imaging of tissue using the second and third near-infrared spectral windows. J Biomed Opt. 2014;19(5):056004. 

留言 (0)

沒有登入
gif