Challenges of aortic valve tissue culture – maintenance of viability and extracellular matrix in the pulsatile dynamic microphysiological system

Arastéh K, Baenkler H, Bieber C. Innere Medizin [Internet]. Reihe D, editor. Innere Medizinpie. Stuttgart: Georg Thieme Verlag; 2018. p. 131–155. Available from: https://eref.thieme.de/10.1055/b-005-145255.

Coffey S, Roberts-Thomson R, Brown A, Carapetis J, Chen M, Enriquez-Sarano M, et al. Global epidemiology of valvular heart disease. Nat Rev Cardiol. 2021;18(12):853–64.

Article  Google Scholar 

Fernandez Esmerats J, Villa-Roel N, Kumar S, Gu L, Salim MT, Ohh M, et al. Disturbed flow increases UBE2C (Ubiquitin E2 Ligase C) via Loss of miR-483-3p, inducing aortic valve calcification by the pVHL (von Hippel-Lindau Protein) and HIF-1α (Hypoxia-Inducible Factor-1α) pathway in endothelial cells. Arterioscler Thromb Vasc Biol. 2019;39(3):467–81.

Article  Google Scholar 

Rathan S, Ankeny CJ, Arjunon S, Ferdous Z, Kumar S, Fernandez Esmerats J, et al. Identification of side- and shear-dependent microRNAs regulating porcine aortic valve pathogenesis. Sci Rep. 2016;6:1–16. https://doi.org/10.1038/srep25397.

Article  Google Scholar 

Leopold JA. Cellular mechanisms of aortic valve calcification. Circ Cardiovasc Interv. 2012;5(4):605–14.

Article  Google Scholar 

Hsu CPD, Hutcheson JD, Ramaswamy S. Oscillatory fluid-induced mechanobiology in heart valves with parallels to the vasculature. Vasc Biol. 2020;2(1):R59-71.

Article  Google Scholar 

Ohukainen P, Ruskoaho H, Rysa J. Cellular mechanisms of valvular thickening in early and intermediate calcific aortic valve disease. Curr Cardiol Rev. 2018;14(4):264–71.

Article  Google Scholar 

Chen JH, Simmons CA. Cell-matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues. Circ Res. 2011;108(12):1510–24.

Article  Google Scholar 

Rutkovskiy A, Malashicheva A, Sullivan G, Bogdanova M, Kostareva A, Stensløkken KO, et al. Valve interstitial cells: the key to understanding the pathophysiology of heart valve calcification. J Am Heart Assoc. 2017;6(9):1–24.

Article  Google Scholar 

Alushi B, Curini L, Christopher MR, Grubitzch H, Landmesser U, Amedei A, et al. Calcific aortic valve disease-natural history and future therapeutic strategies. Front Pharmacol. 2020;11(May):1–12.

Google Scholar 

Blaser MC, Kraler S, Luscher TF, Aikawa E. Multi-omics approaches to define calcific aortic valve disease pathogenesis. Circ Res. 2021;128:1371–97.

Article  Google Scholar 

Akat K, Borggrefe M, Kaden JJ. Aortic valve calcification: basic science to clinical practice. Heart. 2009;95(8):616–23.

Article  Google Scholar 

Zheng KH, Tzolos E, Dweck MR. Pathophysiology of aortic stenosis and future perspectives for medical therapy. Cardiol Clin. 2020;38(1):1–12. https://doi.org/10.1016/j.ccl.2019.09.010.

Article  Google Scholar 

Hutcheson JD, Aikawa E, Merryman WD. Potential drug targets for calcific aortic valve disease. Nat Rev Cardiol. 2014;11(4):218–31. Available from: http://www.nature.com/articles/nrcardio.2014.1.

Article  Google Scholar 

Bowler MA, Merryman WD. In vitro models of aortic valve calcification: Solidifying a system. Cardiovasc Pathol. 2015;24(1):1–10. https://doi.org/10.1016/j.carpath.2014.08.003.

Article  Google Scholar 

Chester AH, Grande-Allen KJ. Which biological properties of heart valves are relevant to tissue engineering? Front Cardiovasc Med. 2020;7:63.

Article  Google Scholar 

Dweck MR, Boon NA, Newby DE. Calcific aortic stenosis: a disease of the valve and the myocardium. j am coll cardiol. 2012;60(19):1854–63. https://doi.org/10.1016/j.jacc.2012.02.093.

Article  Google Scholar 

Kostyunin AE, Yuzhalin AE, Rezvova MA, Ovcharenko EA, Glushkova TV, Kutikhin AG. Degeneration of bioprosthetic heart valves: update 2020. J Am Heart Assoc. 2020;9(19):1–19.

Article  Google Scholar 

Kostyunin AE, Yuzhalin AE, Ovcharenko EA, Kutikhin AG. Development of calcific aortic valve disease: do we know enough for new clinical trials? J Mol Cell Cardiol. 2019;132(May):189–209.

Article  Google Scholar 

Iop L. Toward the effective bioengineering of a pathological tissue for cardiovascular disease modeling: old strategies and new frontiers for prevention, diagnosis, and therapy. Front Cardiovasc Med. 2021;7(March):1–22.

Google Scholar 

Chu Y, Lund DD, Doshi H, Keen HL, Knudtson KL, Funk ND, et al. Fibrotic aortic valve stenosis in hypercholesterolemic/hypertensive mice. Arterioscler Thromb Vasc Biol. 2016;36(3):466–74.

Article  Google Scholar 

LaHaye S, Majumdar U, Yasuhara J, Koenig SN, Matos-Nieves A, Kumar R, et al. Developmental origins for semilunar valve stenosis identified in mice harboring congenital heart disease-associated GATA4 mutation. DMM Dis Model Mech. 2019;12(6):dmm036764.

Article  Google Scholar 

Miller JD, Weiss RM, Heistad DD. Calcific aortic valve stenosis: Methods, models, and mechanisms. Circ Res. 2011;108(11):1392–412.

Article  Google Scholar 

Tsang HG, Cui L, Farquharson C, Corcoran BM, Summers KM, Macrae VE. Exploiting novel valve interstitial cell lines to study calcific aortic valve disease. Mol Med Rep. 2018;17(2):2100–6.

Google Scholar 

Alonso JL, Goldmann WH. Cellular mechanotransduction. AIMS Biophys. 2016;3(1):50–62.

Article  Google Scholar 

Tsang HG, Rashdan NA, Whitelaw CBA, Corcoran BM, Summers KM, MacRae VE. Large animal models of cardiovascular disease. Cell Biochem Funct. 2016;34(3):113–32.

Article  Google Scholar 

Jannasch A, Schnabel C, Galli R, Faak S, Büttner P, Dittfeld C, et al. Optical coherence tomography and multiphoton microscopy offer new options for the quantification of fibrotic aortic valve disease in ApoE−/− mice. Sci Rep. 2021;11(1):1–14. https://doi.org/10.1038/s41598-021-85142-4.

Article  Google Scholar 

Sider KL, Blaser MC, Simmons CA. Animal models of calcific aortic valve disease. Int J Inflam. 2011;2011(Ldl):1–18.

Google Scholar 

Guerraty MA, Grant GR, Karanian JW, Chiesa OA, Pritchard WF, Davies PF. Hypercholesterolemia induces side-specific phenotypic changes and peroxisome proliferator-activated receptor-γ pathway activation in swine aortic valve endothelium. Arterioscler Thromb Vasc Biol. 2010;30(2):225–31. Available from: https://www.ahajournals.org/doi/10.1161/ATVBAHA.109.198549.

Article  Google Scholar 

Goody PR, Hosen MR, Christmann D, Niepmann ST, Zietzer A, Adam M, et al. Aortic valve stenosis: from basic mechanisms to novel therapeutic targets. Arterioscler Thromb Vasc Biol. 2020;40:885–900.

Article  Google Scholar 

Rock CA, Han L, Doehring TC. Complex collagen fiber and membrane morphologies of the whole porcine aortic valve. PLoS One. 2014;9(1):1–9.

Article  Google Scholar 

Sim EKW, Muskawad S, Lim CS, Yeo JH, Lim KH, Grignani RT, et al. Comparison of human and porcine aortic valves. Clin Anat. 2003;16(3):193–6.

Article  Google Scholar 

Winkelkotte M, Schmieder F, Behrens S, Salminger D, Jannasch A, Matschke K, et al. Micro-Physiological-Systems enable investigation of hypoxia induced pathological processes in human aortic valve cells and tissues. Curr Dir Biomed Eng. 2021;7(2):45–8.

Article  Google Scholar 

Amrollahi P, Tayebi L. Bioreactors for heart valve tissue engineering: a review. J Chem Technol Biotechnol. 2016;91(4):847–56.

Article  Google Scholar 

Niazy N, Barth M, Selig JI, Feichtner S, Shakiba B, Candan A, et al. Degeneration of aortic valves in a bioreactor system with pulsatile flow. Biomedicines. 2021;9(5):1–16.

Article  Google Scholar 

Sapp MC, Krishnamurthy VK, Puperi BS, Bhatnagar S, Fatora G, Mutyala N, et al. Differential cell-matrix responses in hypoxia-stimulated aortic versus mitral valves. J R Soc Interface. 2016;13(125):20160449.

Article  Google Scholar 

Sun L, Rajamannan NM, Sucosky P. Design and validation of a novel bioreactor to subject aortic valve leaflets to side-specific shear stress. Ann Biomed Eng. 2011;39(8):2174–85.

Article  Google Scholar 

Sun L, Rajamannan NM, Sucosky P. Defining the role of fluid shear stress in the expression of early signaling markers for calcific aortic valve disease. PLoS One. 2013;8(12):e84433.

Article  Google Scholar 

Zabirnyk A, Perez MDM, Blasco M, Stensløkken KO, Ferrer MD, Salcedo C, et al. A novel ex vivo model of aortic valve calcification a preliminary report. Front Pharmacol. 2020;11:1–7.

Article  Google Scholar 

Yap CH, Saikrishnan N, Yoganathan AP. Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet. Biomech Model Mechanobiol. 2012;11(1–2):231–44.

Article  Google Scholar 

Weber A, Pfaff M, Schöttler F, Schmidt V, Lichtenberg A, Akhyari P. Reproducible in vitro tissue culture model to study basic mechanisms of calcific aortic valve disease: Comparative analysis to valvular interstitials cells. Biomedicines. 2021;9(5):474.

Article  Google Scholar 

Mongkoldhumrongkul N, Latif N, Yacoub MH, Chester AH. Effect of side-specific valvular shear stress on the content of extracellular matrix in aortic valves. Cardiovasc Eng Technol. 2018;9(2):151–7.

Article  Google Scholar 

Tandon I, Ozkizilcik A, Ravishankar P, Balachandran K. Aortic valve cell microenvironment: considerations for developing a valve-on-chip. Biophys Rev. 2021;2(4):041303.

Article  Google Scholar 

Maeda K, Ma X, Hanley FL, Riemer RK. Critical role of coaptive strain in aortic valve leaflet homeostasis: use of a novel flow culture bioreactor to explore heart valve mechanobiology. J Am Heart Assoc. 2016;5(8):e003506.

Article  Google Scholar 

Rajamannan NM, Moura LM, Best P. Bench to bedside defining calcific aortic valve disease: osteocardiology. Expert Rev Cardiovasc Ther. 2020;18(5):239–47. https://doi.org/10.1080/14779072.2020.1757431.

Article  Google Scholar 

Balachandran K, Sucosky P, Jo H, Yoganathan AP. Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: Implications for degenerative aortic valve disease. Am J Physiol - Hear Circ Physiol. 2009;296(3):756–64.

Article  Google Scholar 

Bogdanova M, Zabirnyk A, Malashicheva A, Semenova D, Kvitting JPE, Kaljusto ML, et al. Models and techniques to study aortic valve calcification in vitro, ex vivo and in vivo. An overview. Front Pharmacol. 2022;13:1–25.

Article  Google Scholar 

Behrens S, Schmieder F, Polk C, Schöps P. PDMS free modular plug and play construction kit for the development of micro-physiological systems. Proc. SPIE 11637, Microfluidics, BioMEMS, and Medical Microsystems XIX, 116370O. 2021;20:10. https://doi.org/10.1117/12.2585203.

Kolanowski TJ, Busek M, Schubert M, Dmitrieva A, Binnewerg B, Pöche J, et al. Enhanced structural maturation of human induced pluripotent stem cell-derived cardiomyocytes under a controlled microenvironment in a microfluidic system. Acta Biomater. 2020;102:273–86.

Article  Google Scholar 

Dittfeld C, Winkelkotte M, Behrens S, Schmieder F, Jannasch A, Matschke K, et al. Establishment of a resazurin-based aortic valve tissue viability assay for dynamic culture in a microphysiological system. Küpper J-H, Krüger-Genge A, Jung F, editors. Clin Hemorheol Microcirc [Internet]. 2021;79(1):167–78. Available from: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/CH-219112.

Gantenbein-Ritter B, Potier E, Zeiter S, Van Der Werf M, Sprecher CM, Ito K. Accuracy of three techniques to determine cell viability in 3D tissues or scaffolds. Tissue Eng - Part C Methods. 2008;14(4):353–8. Available from: www.liebertpub.com.

留言 (0)

沒有登入
gif