Preoperative serum cortisone levels are associated with cognition in preschool-aged children with tetralogy of Fallot after corrective surgery: new evidence from human populations and mice

Diaz-Frias J, Guillaume M. Tetralogy of Fallot. In: StatPearls. Treasure Island: StatPearls Publishing; 2022.

van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58:2241–7.

Article  PubMed  Google Scholar 

Sun L, Macgowan CK, Sled JG, Yoo SJ, Manlhiot C, Porayette P, et al. Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation. 2015;131:1313–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun L, van Amerom JFP, Marini D, Portnoy S, Lee FT, Saini BS, et al. MRI characterization of hemodynamic patterns of human fetuses with cyanotic congenital heart disease. Ultrasound Obstet Gynecol. 2021;58:824–36.

Article  CAS  PubMed  Google Scholar 

Marino BS, Lipkin PH, Newburger JW, Peacock G, Gerdes M, Gaynor JW, et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation. 2012;126:1143–72.

Article  PubMed  Google Scholar 

Morton SU, Maleyeff L, Wypij D, Yun HJ, Rollins CK, Watson CG, et al. Abnormal right-hemispheric sulcal patterns correlate with executive function in adolescents with tetralogy of fallot. Cereb Cortex. 2021;31:4670–80.

Article  PubMed  PubMed Central  Google Scholar 

Hovels-Gurich HH, Bauer SB, Schnitker R, Willmes-von Hinckeldey K, Messmer BJ, Seghaye MC, et al. Long-term outcome of speech and language in children after corrective surgery for cyanotic or acyanotic cardiac defects in infancy. Eur J Paediatr Neurol. 2008;12:378–86.

Article  PubMed  Google Scholar 

Favilla E, Faerber JA, Hampton LE, Tam V, DeCost G, Ravishankar C, et al. Early evaluation and the effect of socioeconomic factors on neurodevelopment in infants with tetralogy of fallot. Pediatr Cardiol. 2021;42:643–53.

Article  PubMed  PubMed Central  Google Scholar 

Ma S, Hu Y, Liu Y, Pu Y, Zuo P, Hu Q, et al. The effect of abnormal regional homogeneity and spontaneous low-frequency brain activity on lower cognitive ability: a cross-sectional study on postoperative children with tetralogy of fallot. Front Neurosci. 2021;15:685372.

Article  PubMed  Google Scholar 

Liu Y, Yang M, Fu M, Ma S, Zhu M, Wang S, et al. Aberrant white matter organization correlated with neurodevelopment outcomes in tetralogy of fallot: an atlas-based diffusion tensor imaging study. Pediatr Neurol. 2022;133:15–20.

Article  PubMed  Google Scholar 

Yang M, Liu Y, Ma S, Wang S, Fu M, Zhu M, et al. Altered brain structure in preschool-aged children with tetralogy of Fallot. Pediatr Res. 2023;93:1321–7.

Article  PubMed  Google Scholar 

Pu Y, Li S, Ma S, Hu Y, Hu Q, Liu Y, et al. Brain MRI radiomics analysis of school-aged children with tetralogy of fallot. Comput Math Methods Med. 2021;2021:2380346.

Article  PubMed  PubMed Central  Google Scholar 

Ma S, Li Y, Liu Y, Xu C, Li H, Yao Q, et al. Changes in cortical thickness are associated with cognitive ability in postoperative school-aged children with tetralogy of fallot. Front Neurol. 2020;11:691.

Article  PubMed  PubMed Central  Google Scholar 

McGarrah RW, Crown SB, Zhang GF, Shah SH, Newgard CB. Cardiovascular metabolomics. Circ Res. 2018;122:1238–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saha S, Chatterjee M, Dutta N, Sinha S, Mukhopadhyay K. Analysis of neurotransmitters validates the importance of the dopaminergic system in autism spectrum disorder. World J Pediatr. 2023;19:770–81.

Article  CAS  PubMed  Google Scholar 

Needham BD, Funabashi M, Adame MD, Wang Z, Boktor JC, Haney J, et al. A gut-derived metabolite alters brain activity and anxiety behavior in mice. Nature. 2022;602:647–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kageyama Y, Kasahara T, Nakamura T, Hattori K, Deguchi Y, Tani M, et al. Plasma nervonic acid is a potential biomarker for major depressive disorder: a pilot study. Int J Neuropsychopharmacol. 2018;21:207–15.

Article  CAS  PubMed  Google Scholar 

Trushina E, Dutta T, Persson XM, Mielke MM, Petersen RC. Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer’s disease using metabolomics. PLoS ONE. 2013;8:e63644.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grech O, Clouter A, Mitchell JL, Alimajstorovic Z, Ottridge RS, Yiangou A, et al. Cognitive performance in idiopathic intracranial hypertension and relevance of intracranial pressure. Brain Commun. 2021;3:fcab202.

Limperopoulos C, Tworetzky W, McElhinney DB, Newburger JW, Brown DW, Robertson RL Jr, et al. Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation. 2010;121:26–33.

Article  CAS  PubMed  Google Scholar 

Miller SP, McQuillen PS, Hamrick S, Xu D, Glidden DV, Charlton N, et al. Abnormal brain development in newborns with congenital heart disease. N Engl J Med. 2007;357:1928–38.

Article  CAS  PubMed  Google Scholar 

Miller SP, Newton N, Ferriero DM, Partridge JC, Glidden DV, Barnwell A, et al. Predictors of 30-month outcome after perinatal depression: role of proton MRS and socioeconomic factors. Pediatr Res. 2002;52:71–7.

Article  PubMed  Google Scholar 

Harbison AL, Votava-Smith JK, Del Castillo S, Kumar SR, Lee V, Schmithorst V, et al. Clinical factors associated with cerebral metabolism in term neonates with congenital heart disease. J Pediatr. 2017;183:e61.

Google Scholar 

Pagano E, Frank B, Jaggers J, Twite M, Urban TT, Klawitter J, et al. Alterations in metabolites associated with hypoxemia in neonates and infants with congenital heart disease. Congenit Heart Dis. 2020;15:251–65.

Article  PubMed  PubMed Central  Google Scholar 

Vimal S, Ranjan R, Yadav S, Majumdar G, Mittal B, Sinha N, et al. Differences in the serum metabolic profile to identify potential biomarkers for cyanotic versus acyanotic heart disease. Perfusion. 2021:2676591211042559.

Zhang M, Huang L, Yang J, Xu W, Su H, Cao J, et al. Ultra-fast label-free serum metabolic diagnosis of coronary heart disease via a deep stabilizer. Adv Sci (Weinh). 2021;8:e2101333.

Article  PubMed  Google Scholar 

Everett AD, Buckley JP, Ellis G, Yang J, Graham D, Griffiths M, et al. Association of neurodevelopmental outcomes with environmental exposure to cyclohexanone during neonatal congenital cardiac operations: a secondary analysis of a randomized clinical trial. JAMA Netw Open. 2020;3:e204070.

Article  PubMed  PubMed Central  Google Scholar 

Kirklin/Barratt-Boyes. Cardiac surgery, 4th ed. Churchill Livingston an imprint of Elsevier Science, 2012.

Hsia CC. Respiratory function of hemoglobin. N Engl J Med. 1998;338:239–47.

Article  CAS  PubMed  Google Scholar 

Richter F, Meurers BH, Zhu C, Medvedeva VP, Chesselet MF. Neurons express hemoglobin alpha- and beta-chains in rat and human brains. J Comp Neurol. 2009;515:538–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Newton DA, Rao KM, Dluhy RA, Baatz JE. Hemoglobin is expressed by alveolar epithelial cells. J Biol Chem. 2006;281:5668–76.

Article  CAS  PubMed  Google Scholar 

Liu L, Zeng M, Stamler JS. Hemoglobin induction in mouse macrophages. Proc Natl Acad Sci U S A. 1999;96:6643–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walser M, Svensson J, Karlsson L, Motalleb R, Aberg M, Kuhn HG, et al. Growth hormone and neuronal hemoglobin in the brain-roles in neuroprotection and neurodegenerative diseases. Front Endocrinol (Lausanne). 2020;11:606089.

Article  PubMed  Google Scholar 

Schelshorn DW, Schneider A, Kuschinsky W, Weber D, Kruger C, Dittgen T, et al. Expression of hemoglobin in rodent neurons. J Cereb Blood Flow Metab. 2009;29:585–95.

Article  CAS  PubMed  Google Scholar 

Nakajima M, Shirasawa T. Presenilin-1-deficient neurons are nitric oxide-dependently killed by hydrogen peroxide in vitro. Neuroscience. 2004;125:563–8.

Article  CAS  PubMed  Google Scholar 

Wilson MT, Reeder BJ. Oxygen-binding haem proteins. Exp Physiol. 2008;93:128–32.

Article  CAS  PubMed  Google Scholar 

Lu Y, Wang J, Tang F, Pratap UP, Sareddy GR, Dhandapani KM, et al. Regulation and role of neuron-derived hemoglobin in the mouse hippocampus. Int J Mol Sci. 2022;23:5360.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Atti AR, Palmer K, Volpato S, Zuliani G, Winblad B, Fratiglioni L. Anemia increases the risk of dementia in cognitively intact elderly. Neurobiol Aging. 2006;27:278–84.

Article  CAS  PubMed  Google Scholar 

Shah RC, Wilson RS, Tang Y, Dong X, Murray A, Bennett DA. Relation of hemoglobin to level of cognitive function in older persons. Neuroepidemiology. 2009;32:40–6.

Article  PubMed  Google Scholar 

Deal JA, Carlson MC, Xue QL, Fried LP, Chaves PH. Anemia and 9-year domain-specific cognitive decline in community-dwelling older women: the Women’s Health and Aging Study II. J Am Geriatr Soc. 2009;57:1604–11.

Article 

留言 (0)

沒有登入
gif