Neuroprotective Effects of Sinomenine on Experimental Autoimmune Encephalomyelitis via Anti-Inflammatory and Nrf2-Dependent Anti-Oxidative Stress Activity

AbdulSalam, S. F., Thowfeik, F. S., & Merino, E. J. (2016). Excessive reactive oxygen species and exotic DNA lesions as an exploitable liability. Biochemistry, 55(38), 5341–5352. https://doi.org/10.1021/acs.biochem.6b00703.

Article  CAS  PubMed  Google Scholar 

Adamczyk, B., & Adamczyk-Sowa, M. (2016). New Insights into the Role of Oxidative Stress Mechanisms in the Pathophysiology and Treatment of Multiple Sclerosis. Oxid Med Cell Longev, 2016, 1973834, https://doi.org/10.1155/2016/1973834.

Adamczyk-Sowa, M., Sowa, P., Adamczyk, J., Niedziela, N., Misiolek, H., Owczarek, M., et al. (2016). Effect of melatonin supplementation on plasma lipid hydroperoxides, homocysteine concentration and chronic fatigue syndrome in multiple sclerosis patients treated with interferons-beta and mitoxantrone. Journal of Physiology and Pharmacology, 67(2), 235–242.

CAS  PubMed  Google Scholar 

Blaser, H., Dostert, C., Mak, T. W., & Brenner, D. (2016). TNF and ROS crosstalk in inflammation. Trends in Cell Biology, 26(4), 249–261. https://doi.org/10.1016/j.tcb.2015.12.002.

Article  CAS  PubMed  Google Scholar 

Brambilla, R. (2019). The contribution of astrocytes to the neuroinflammatory response in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathologica, 137(5), 757–783. https://doi.org/10.1007/s00401-019-01980-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brieger, K., Schiavone, S., Miller, F. J. Jr., & Krause, K. H. (2012). Reactive oxygen species: From health to disease. Swiss Medical Weekly, 142, w13659. https://doi.org/10.4414/smw.2012.13659.

Article  CAS  PubMed  Google Scholar 

Buendia, I., Michalska, P., Navarro, E., Gameiro, I., Egea, J., & Leon, R. (2016). Nrf2-ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacology & Therapeutics, 157, 84–104. https://doi.org/10.1016/j.pharmthera.2015.11.003.

Article  CAS  Google Scholar 

Choi, B. Y., Kim, J. H., Kho, A. R., Kim, I. Y., Lee, S. H., Lee, B. E., et al. (2015). Inhibition of NADPH oxidase activation reduces EAE-induced white matter damage in mice. J Neuroinflammation, 12, 104. https://doi.org/10.1186/s12974-015-0325-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi, J. H., Oh, J., Lee, M. J., Bae, H., Ko, S. G., Nah, S. Y., et al. (2021). Inhibition of lysophosphatidic acid receptor 1–3 deteriorates experimental autoimmune encephalomyelitis by inducing oxidative stress. J Neuroinflammation, 18(1), 240. https://doi.org/10.1186/s12974-021-02278-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chu, F., Shi, M., Zheng, C., Shen, D., Zhu, J., Zheng, X., et al. (2018). The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 318, 1–7. https://doi.org/10.1016/j.jneuroim.2018.02.015.

Article  CAS  PubMed  Google Scholar 

Constantinescu, C. S., Farooqi, N., O’Brien, K., & Gran, B. (2011). Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). British Journal of Pharmacology, 164(4), 1079–1106. https://doi.org/10.1111/j.1476-5381.2011.01302.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Meo, S., Reed, T. T., Venditti, P., & Victor, V. M. (2016). Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid Med Cell Longev, 2016, 1245049, https://doi.org/10.1155/2016/1245049.

Ding, C., Li, Y., Sun, Y., Wu, Y., Wang, F., Liu, C., et al. (2022). Sinomenium acutum: A Comprehensive Review of its Botany, Phytochemistry, Pharmacology and clinical application. American Journal of Chinese Medicine, 50(5), 1219–1253. https://doi.org/10.1142/S0192415X22500501.

Article  CAS  PubMed  Google Scholar 

Fan, H., Shu, Q., Guan, X., Zhao, J., Yan, J., Li, X., et al. (2017). Sinomenine protects PC12 neuronal cells against H2O2-induced cytotoxicity and oxidative stress via a ROS-dependent Up-regulation of endogenous antioxidant system. Cellular and Molecular Neurobiology, 37(8), 1387–1398. https://doi.org/10.1007/s10571-017-0469-1.

Article  CAS  PubMed  Google Scholar 

Gao, W. J., Liu, J. X., Xie, Y., Luo, P., Liu, Z. Q., Liu, L., et al. (2021). Suppression of macrophage migration by down-regulating Src/FAK/P130Cas activation contributed to the anti-inflammatory activity of sinomenine. Pharmacological Research, 167, 105513. https://doi.org/10.1016/j.phrs.2021.105513.

Article  CAS  PubMed  Google Scholar 

Gu, B., Zeng, Y., Yin, C., Wang, H., Yang, X., Wang, S., et al. (2012). Sinomenine reduces iNOS expression via inhibiting the T-bet IFN-gamma pathway in experimental autoimmune encephalomyelitis in rats. J Biomed Res, 26(6), 448–455. https://doi.org/10.7555/JBR.26.20110114.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huppert, J., Closhen, D., Croxford, A., White, R., Kulig, P., Pietrowski, E., et al. (2010). Cellular mechanisms of IL-17-induced blood-brain barrier disruption. The Faseb Journal, 24(4), 1023–1034. https://doi.org/10.1096/fj.09-141978.

Article  CAS  PubMed  Google Scholar 

Jiang, X. M., Hu, J. H., Wang, L. L., Ma, C., Wang, X., & Liu, X. L. (2018). Ulinastatin alleviates neurological deficiencies evoked by transient cerebral ischemia via improving autophagy, Nrf-2-ARE and apoptosis signals in hippocampus. Physiological Research, 67(4), 637–646. https://doi.org/10.33549/physiolres.933780.

Article  CAS  PubMed  Google Scholar 

Jiménez-Villegas, J., Kirby, J., Mata, A., Cadenas, S., Turner, M. R., Malaspina, A., et al. (2022). Dipeptide repeat Pathology in C9orf72-ALS is Associated with Redox, mitochondrial and NRF2 pathway imbalance. Antioxidants (Basel), 11(10), https://doi.org/10.3390/antiox11101897.

Kim, R. Y., Hoffman, A. S., Itoh, N., Ao, Y., Spence, R., Sofroniew, M. V., et al. (2014). Astrocyte CCL2 sustains immune cell infiltration in chronic experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 274(1–2), 53–61. https://doi.org/10.1016/j.jneuroim.2014.06.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, T. W., Kim, Y., Jung, W., Kim, D. E., Keum, H., Son, Y., et al. (2021). Bilirubin nanomedicine ameliorates the progression of experimental autoimmune encephalomyelitis by modulating dendritic cells. Journal of Controlled Release : Official Journal of the Controlled Release Society, 331, 74–84. https://doi.org/10.1016/j.jconrel.2021.01.019.

Article  CAS  PubMed  Google Scholar 

Kong, W., Hooper, K. M., & Ganea, D. (2016). The natural dual cyclooxygenase and 5-lipoxygenase inhibitor flavocoxid is protective in EAE through effects on Th1/Th17 differentiation and macrophage/microglia activation. Brain, Behavior, and Immunity, 53, 59–71. https://doi.org/10.1016/j.bbi.2015.11.002.

Article  CAS  PubMed  Google Scholar 

Kuo, P. C., Weng, W. T., Scofield, B. A., Paraiso, H. C., Brown, D. A., Wang, P. Y., et al. (2020). Dimethyl itaconate, an itaconate derivative, exhibits immunomodulatory effects on neuroinflammation in experimental autoimmune encephalomyelitis. J Neuroinflammation, 17(1), 138. https://doi.org/10.1186/s12974-020-01768-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lassmann, H., van Horssen, J., & Mahad, D. (2012). Progressive multiple sclerosis: Pathology and pathogenesis. Nat Rev Neurol, 8(11), 647–656. https://doi.org/10.1038/nrneurol.2012.168.

Article  CAS  PubMed  Google Scholar 

Li, Q., Zhou, W., Wang, Y., Kou, F., Lyu, C., & Wei, H. (2020). Metabolic mechanism and anti-inflammation effects of sinomenine and its major metabolites N-demethylsinomenine and sinomenine-N-oxide. Life Sciences, 261, 118433. https://doi.org/10.1016/j.lfs.2020.118433.

Article  CAS  PubMed  Google Scholar 

Liang, L., Gao, C., Luo, M., Wang, W., Zhao, C., Zu, Y., et al. (2013). Dihydroquercetin (DHQ) induced HO-1 and NQO1 expression against oxidative stress through the Nrf2-dependent antioxidant pathway. Journal of Agriculture and Food Chemistry, 61(11), 2755–2761. https://doi.org/10.1021/jf304768p.

Article  CAS  Google Scholar 

Liddell, J. R. (2017). Are astrocytes the predominant cell type for activation of Nrf2 in aging and neurodegeneration? Antioxidants (Basel), 6(3), https://doi.org/10.3390/antiox6030065.

Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113), 787–795. https://doi.org/10.1038/nature05292.

Article  CAS  PubMed  Google Scholar 

Mayo, L., Trauger, S. A., Blain, M., Nadeau, M., Patel, B., Alvarez, J. I., et al. (2014). Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nature Medicine, 20(10), 1147–1156. https://doi.org/10.1038/nm.3681.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGinley, A. M., Edwards, S. C., Raverdeau, M., & Mills, K. H. G. (2018). Th17cells, gammadelta T cells and their interplay in EAE and multiple sclerosis. Journal of Autoimmunity. https://doi.org/10.1016/j.jaut.2018.01.001.

Article  PubMed  Google Scholar 

Mendiola, A. S., Ryu, J. K., Bardehle, S., Meyer-Franke, A., Ang, K. K., Wilson, C., et al. (2020). Transcriptional profiling and therapeutic targeting of oxidative stress in neuroinflammation. Nature Immunology, 21(5), 513–524. https://doi.org/10.1038/s41590-020-0654-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Michalickova, D., Kotur-Stevuljevic, J., Miljkovic, M., Dikic, N., Kostic-Vucicevic, M., Andjelkovic, M., et al. (2018). Effects of Probiotic supplementation on selected parameters of blood prooxidant-antioxidant balance in Elite athletes: A double-blind randomized placebo-controlled study. J Hum Kinet, 64, 111–122. https://doi.org/10.1515/hukin-2017-0203.

Article  PubMed  PubMed Central  Google Scholar 

Michalickova, D., Sima, M., & Slanar, O. (2020). New insights in the mechanisms of impaired redox signaling and its interplay with inflammation and immunity in multiple sclerosis. Physiological Research, 69(1), 1–19. https://doi.org/10.33549/physiolres.934276.

Article  CAS  PubMed  Google Scholar 

Mills, K. H. (2011). TLR-dependent T cell activation in autoimmunity. Nature Reviews Immunology, 11(12), 807–822. https://doi.org/10.1038/nri3095.

Article  CAS 

留言 (0)

沒有登入
gif