A multimodal deep learning architecture for smoking detection with a small data approach

Abstract

Introduction: Covert tobacco advertisements often raise regulatory measures. This paper presents that artificial intelligence, particularly deep learning, has great potential for detecting hidden advertising and allows unbiased, reproducible, and fair quantification of tobacco-related media content. Methods: We propose an integrated text and image processing model based on deep learning, generative methods, and human reinforcement, which can detect smoking cases in both textual and visual formats, even with little available training data. Results: Our model can achieve 74\% accuracy for images and 98\% for text. Furthermore, our system integrates the possibility of expert intervention in the form of human reinforcement. Conclusions: Using the pre-trained multimodal, image, and text processing models available through deep learning makes it possible to detect smoking in different media even with few training data.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

The project no. KDP-2021 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development, and Innovation Fund, financed under the C1774095 funding scheme. Also, this work was partly funded by the project GINOP-2.3.2-15-2016-00005 supported by the European Union, co-financed by the European Social Fund, and by the project TKP2021-NKTA-34, implemented with the support provided by the National Research, Development, and Innovation Fund of Hungary under the TKP2021-NKTA funding scheme. In addition, the study received further funding from the National Research, Development and Innovation Office of Hungary grant (RRF-2.3.1-21-2022-00006, Data-Driven Health Division of National Laboratory for Health Security).

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

All data produced in the present study are available upon reasonable request to the authors.

留言 (0)

沒有登入
gif