Did Early Pleistocene hominins control hammer strike angles when making stone tools?

ElsevierVolume 183, October 2023, 103427Journal of Human EvolutionAuthor links open overlay panel, , , , Highlights•

We measured the hammer strike angle from the archaeological record.

We observed an increased association between bulb angle and some flake attributes.

Hominins adjusted hammer strike angle towards the Oldowan–Acheulean transition.

Abstract

In the study of Early Pleistocene stone artifacts, researchers have made considerable progress in reconstructing the technical decisions of hominins by examining various aspects of lithic technology, such as reduction sequences, hammer selection, platform preparation, core management, and raw material selection. By comparison, our understanding of the ways in which Early Pleistocene hominins controlled the delivery and application of percussive force during flaking remains limited. In this study, we focus on a key aspect of force delivery in stone knapping, namely the hammerstone striking angle (or the angle of blow), which has been shown to play a significant role in determining the knapping outcome. Using a dataset consists of 12 Early Pleistocene flake assemblages dated from 1.95 Ma to 1.4 Ma, we examined temporal patterns of the hammer striking angle by quantifying the bulb angle, a property of the flake's Hertzian cone that reflects the hammer striking angle used in flake production. We further included a Middle Paleolithic flake assemblage as a point of comparison from a later time period. In the Early Pleistocene dataset, we observed an increased association between the bulb angle and other flake variables related to flake size over time, a pattern similarly found in the Middle Paleolithic assemblage. These findings suggest that, towards the Oldowan–Acheulean transition, hominins began to systematically adjust the hammer striking angle in accordance with platform variables to detach flakes of different sizes more effectively, implying the development of a more comprehensive understanding of the role of the angle of blow in flake formation by ∼1.5 Ma.

Keywords

Oldowan

Koobi Fora

Knapping

Hammer strike angle

Bulb angle

© 2023 The Authors. Published by Elsevier Ltd.

留言 (0)

沒有登入
gif