Insights into the mediation of Ca2+ signaling in the promoting effects of LETX-VI on the synthesis and release of dopamine

Ahnert-Hilger G, Bader MF, Bhakdi S, Gratzl M (1989) Introduction of macromolecules into bovine adrenal medullary chromaffin cells and rat pheochromocytoma cells (PC12) by permeabilization with streptolysin O: inhibitory effect of tetanus toxin on catecholamine secretion. J Neurochem 52(6):1751–1758. https://doi.org/10.1111/j.1471-4159.1989.tb07253.x

Article  CAS  PubMed  Google Scholar 

Akhunov AA, Golubenko Z, Abdurashidova NA, Mustakimova EC, Ibragimov FA, Mackessy S (2001) Comparative biochemistry of the physiologically active components of venom, hemolymph, and eggs of the karakurt spider (Latrodectus tredecimguttatus). Chem Nat Compd 37(6):562–565. https://doi.org/10.1023/A:1014829218721

Article  CAS  Google Scholar 

Brini M, Ottolini D, Calì T, Carafoli E (2013) Calcium in health and disease. Met Ions Life Sci 13:81–137. https://doi.org/10.1007/978-94-007-7500-8_4

Article  PubMed  Google Scholar 

Buffkin DC, Russell FE, Deshmukh A (1971) Preliminary studies on the toxicity of black widow spider eggs. Toxicon 9(4):393–402. https://doi.org/10.1016/0041-0101(71)90138-3

Article  CAS  PubMed  Google Scholar 

Campbell AK (1983) Intracellular calcium. Wiley, New York

Google Scholar 

Carafoli E, Krebs J (2016) Why calcium? How calcium became the best communicator. J Biol Chem 291(40):20849–20857. https://doi.org/10.1074/jbc.R116.735894

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carlsson A, Waldeck B (1958) A fluorimetric method for the determination of dopamine (3-hydroxytyramine). Acta Physiol Scand 44(3–4):293–298. https://doi.org/10.1111/j.1748-1716.1958.tb01628.x

Article  CAS  PubMed  Google Scholar 

Chapman ER (2008) How does synaptotagmin trigger neurotransmitter release? Annu Rev Biochem 77:615–641

Article  CAS  PubMed  Google Scholar 

Chavis P, Fagni L, Lansman JB, Bockaert J (1996) Functional coupling between ryanodine receptors and L-type calcium channel in neurons. Nature 382:719–722. https://doi.org/10.1038/382719a0

Article  CAS  PubMed  Google Scholar 

Chen YS, Van Petegem F (2022) Structural and functional conservation of the activating Ca2+ binding site in inositol 1,4.5-trisphosphate and ryanodine receptors. Cell Calcium 108:102671. https://doi.org/10.1016/j.ceca.2022.102671

Article  CAS  PubMed  Google Scholar 

Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058. https://doi.org/10.1016/j.cell.2007.11.028

Article  CAS  PubMed  Google Scholar 

Das PC, Mcelroy WK, Cooper RL (2000) Differential modulation of catecholamines by chlorotriazine herbicides in pheochromocytoma (PC12) cells in vitro. Toxicol Sci 56(2):324–331. https://doi.org/10.1093/toxsci/56.2.324

Article  CAS  PubMed  Google Scholar 

Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82:893–922. https://doi.org/10.1152/physrev.00013.2002

Article  CAS  PubMed  Google Scholar 

Foskett JK, White C, Cheung KH, Mak DO (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87:593–658. https://doi.org/10.1152/physrev.00035.2006

Article  CAS  PubMed  Google Scholar 

Geppert M, Südhofm TC (1998) RAB3 and synaptotagmin: the yin and yang of synaptic membrane fusion. Annu Rev Neurosci 21:75–95. https://doi.org/10.1146/annurev.neuro.21.1.75

Article  CAS  PubMed  Google Scholar 

Grasso A, Pelliccia M, Alema S (1982) Characterization of α-latrotoxin interaction with rat brain synaptosomes and PC12 cells. Toxicon 20(1):149–156. https://doi.org/10.1016/0041-0101(82)90184-2

Article  CAS  PubMed  Google Scholar 

Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73(7):2424–2428. https://doi.org/10.1073/pnas.73.7.2424

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gruol DL, Nelson TE, Hao C, Michael S, Vukojevic V, Ming Y, Terenius L (2012) Ethanol alters opioid regulation of Ca2+ influx through L-type Ca2+ channels in PC12 cells. Alcohol Clin Exp Res 36(3):443–456. https://doi.org/10.1111/j.1530-0277.2011.01631.x

Article  CAS  PubMed  Google Scholar 

Hirota K, Kudo M, Kudo T, Kitayama M, Kushikata T, Lambert DG, Matsuki A (2000) Barbiturates inhibit K(+)-evoked noradrenaline and dopamine release from rat striatal slices–involvement of voltage sensitive Ca2+ channels. Neurosci Lett 291:175–178. https://doi.org/10.1016/s0304-3940(00)01408-7

Article  CAS  PubMed  Google Scholar 

Kapatos G, Zigmond MJ (1982) Influence of calcium on dopamine synthesis and tyrosine hydroxylase activity in rat striatum. J Neurochem 39(2):327–335. https://doi.org/10.1111/j.1471-4159.1982.tb03951.x

Article  CAS  PubMed  Google Scholar 

Kuo W, Herrick DZ, Ellena JF, Cafiso DS (2009) The calcium-dependent and calcium-independent membrane binding of synaptotagmin 1: two modes of C2B binding. J Mol Biol 387(2):284–294. https://doi.org/10.1016/j.jmb.2009.01.064

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685. https://doi.org/10.1038/227680a0

Article  CAS  PubMed  Google Scholar 

Layhadi JA, Fountain SJ (2017) Influence of ER leak on resting cytoplasmic Ca2+ and receptor-mediated Ca2+ signalling in human macrophage. Biochem Biophys Res Commun 487(3):633–639. https://doi.org/10.1016/j.bbrc.2017.04.106

Article  CAS  PubMed  Google Scholar 

Lei Q, Yu H, Peng X, Yan S, Wang J, Yan Y, Wang X (2015) Isolation and preliminary characterization of proteinaceous toxins with insecticidal and antibacterial activities from black widow spider (L. tredecimguttatus) eggs. Toxins 7:886–899. https://doi.org/10.3390/toxins7030886

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leviel V, Olivier V, Guibert B (1994) The role of calcium ions in dopamine synthesis and dopamine release. The basal ganglia IV. Plenum Press, New York, pp 403–409

Chapter  Google Scholar 

Li J, Liu H, Duan Z, Cao R, Wang X, Liang S (2012) Protein compositional analysis of the eggs of black widow spider (Latrodectus tredecimguttatus): implications for the understanding of egg toxicity. J Biochem Mol Toxicol 26(12):510–515. https://doi.org/10.1002/jbt.21460

Article  CAS  PubMed  Google Scholar 

Li J, Yan Y, Wang J, Guo T, Hu W, Duan Z, Wang X, Liang S (2013) Purification and partial haracterization of a novel neurotoxic protein from eggs of black widow spiders (Latrodectus tredecimguttatus). J Biochem Mol Toxicol 27:337–342. https://doi.org/10.1002/jbt.21493

Article  CAS  PubMed  Google Scholar 

Li J, Yan Y, Yu H, Peng X, Zhang Y, Hu W, Duan Z, Wang X, Liang S (2014) Isolation and identification of a sodium channel-inhibiting protein from eggs of black widow spiders. Int J Biol Macromol 65:115–120. https://doi.org/10.1016/j.ijbiomac.2014.01.004

Article  CAS  PubMed  Google Scholar 

Llinas R, Nicholson C (1975) Calcium role in depolarization-secretion coupling: an aequorin study in squid giant synapse. Proc Natl Acad Sci U S A 72(1):187–190. https://doi.org/10.1073/pnas.72.1.187

Article  CAS  PubMed  PubMed Central  Google Scholar 

Long GL, Winefordner ID (1983) Limit of detection: a closer look at the IUPAC definition. Anal Chem 55:712–724

Google Scholar 

Missiaen L, Robberecht W, Van Den Bosch L, Callewaert G, Parys JB, Wuytack F, Raeymaekers L, Nilius B, Eggermont J, De Smedt H (2000) Abnormal intracellular Ca2+ homeostasis and disease. Cell Calcium 28(1):1–21. https://doi.org/10.1054/ceca.2000.0131

Article  CAS  PubMed  Google Scholar 

Mouton J, Marty I, Villaz M, Feltz A, Maulet Y (2001) Molecular interaction of dihydropyridine receptors with type-1 ryanodine receptors in rat brain. Biochem J 354:597–603. https://doi.org/10.1042/0264-6021:3540597

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mullikin-Kilpatrick D, Treistman SN (1995) Inhibition of dihydropyridine-sensitive Ca2+ channels by ethanol in undifferentiated and nerve growth factor-treated PC12 cells: interaction with the inactivated state. J Pharmacol Exp Ther 272(2):489–497

CAS  PubMed  Google Scholar 

Olivier V, Gobert A, Guibert B, Leviel V (1999) The in vivo modulation of dopamine synthesis by calcium ions: influences on the calcium independent release. Neurochem Int 35(6):431–438. https://doi.org/10.1016/s0197-0186(99)00094-7

Article  CAS  PubMed  Google Scholar 

Parnas I, Parnas H (1988) The ‘Ca-voltage’ hypothesis for neurotransmitter release. Biophys Chem 29(1–2):85–93.

Comments (0)

No login
gif