HIV-1-related factors interact with p53 to influence cellular processes

Connor. RI, Cao. MH, Ho Y. Increased viral burden and cytopathicity correlate temporally with CD4 + T-Lymphocyte decline and clinical progression in human immunodeficiency virus type 1-Infected individuals. J Virol. 1993;67(4):1772–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simon V, Ho DD, Abdool Karim Q. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet. 2006;368(9534):489–504.

Article  PubMed  PubMed Central  Google Scholar 

Swanson CM, Malim MH, SnapShot. HIV-1 proteins. Cell. 2008;133(4):742–3.

Article  PubMed  Google Scholar 

Raja R, Ronsard L, Lata S, Trivedi S, Banerjea AC. HIV-1 Tat potently stabilises Mdm2 and enhances viral replication. Biochem J. 2017;474(14):2449–64.

Article  CAS  PubMed  Google Scholar 

Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Bio. 2015;16(7):393–405.

Article  CAS  Google Scholar 

Levine AJ. Reviewing the future of the P53 field. Cell Death Differ. 2018;25(1):1–2.

Article  CAS  PubMed  Google Scholar 

Hanprasertpong J, Tungsinmunkong K, Chichareon S, Wootipoom V, Geater A, Buhachat R, et al. Correlation of p53 and Ki-67 (MIB-1) expressions with clinicopathological features and prognosis of early stage cervical squamous cell carcinomas. J Obstet Gynaecol Res. 2010;36(3):572–80.

Article  CAS  PubMed  Google Scholar 

Martinez-Rivera M, Siddik ZH. Resistance and gain-of-resistance phenotypes in cancers harboring wild-type p53. Biochem Pharmacol. 2012;83(8):1049–62.

Article  CAS  PubMed  Google Scholar 

Attardi LD. The role of p53-mediated apoptosis as a crucial anti-tumor response to genomic instability: lessons from mouse models. Mutat Res. 2005;569(1–2):145–57.

Article  CAS  PubMed  Google Scholar 

Arakawa TH, Yamaguchi. H, Shiraishi. T, Matsui KFukudaS. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature. 2000;404(6773):42–9.

Article  PubMed  Google Scholar 

Gruevska A, Moragrega AB, Galindo MJ, Esplugues JV, Blas-Garcia A, Apostolova N. p53 and p53-related mediators PAI-1 and IGFBP-3 are downregulated in peripheral blood mononuclear cells of HIV-patients exposed to non-nucleoside reverse transcriptase inhibitors. Antiviral Res. 2020;178:104784.

Article  CAS  PubMed  Google Scholar 

Kinnetz M, Alghamdi F, Racz M, Hu W, Shi B. The impact of p53 on the early stage replication of retrovirus. Virol J. 2017;14(1):151–62.

Article  PubMed  PubMed Central  Google Scholar 

Uesugi M, Verdine, OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. GL. The α-helical FXX⌽⌽ motif in p53: TAF interaction and discrimination by MDM2. PROCEEDINGS. 1999;96(26):14801–6.

Haupt Y, Maya. R, Kazaz. A, Oren. M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387(6630):296–9.

Article  CAS  PubMed  Google Scholar 

Gleber-Netto FO, Zhao M, Trivedi S, Wang J, Jasser S, McDowell C, et al. Distinct pattern of TP53 mutations in human immunodeficiency virus-related head and neck squamous cell carcinoma. Cancer. 2018;124(1):84–94.

Article  CAS  PubMed  Google Scholar 

Greenway AL, McPhee DA, Allen K, Johnstone R, Holloway G, Mills J, et al. Human immunodeficiency virus type 1 Nef binds to tumor suppressor p53 and protects cells against p53-mediated apoptosis. J Virol. 2002;76(6):2692–702.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brochado O, Martinez I, Berenguer J, Medrano L, Gonzalez-Garcia J, Jimenez-Sousa MA, et al. HCV eradication with IFN-based therapy does not completely restore gene expression in PBMCs from HIV/HCV-coinfected patients. J Biomed Sci. 2021;28(1):23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao H, Chen X, Wang Z, Wang L, Xia Q, Zhang W. The role of MDM2-p53 axis dysfunction in the hepatocellular carcinoma transformation. Cell Death Discov. 2020;6:53–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gichuhi S, Ohnuma S, Sagoo MS, Burton MJ. Pathophysiology of ocular surface squamous neoplasia. Exp Eye Res. 2014;129:172–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schank M, Zhao J, Wang L, Nguyen LNT, Zhang Y, Wu XY et al. ROS-Induced mitochondrial dysfunction in CD4 T cells from ART-Controlled people living with HIV. Viruses. 2023;15(5).

Park IW, Fan Y, Luo X, Ryou MG, Liu J, Green L, et al. HIV-1 Nef is transferred from expressing T cells to hepatocytic cells through conduits and enhances HCV replication. PLoS ONE. 2014;9(6):545–55.

Article  Google Scholar 

Ali A, Farooqui SR, Rai J, Singh J, Kumar V, Mishra R, et al. HIV-1 Nef promotes ubiquitination and proteasomal degradation of p53 tumor suppressor protein by using E6AP. Biochem Biophys Res Commun. 2020;529(4):1038–44.

Article  CAS  PubMed  Google Scholar 

Wilson KM, He JJ. HIV Nef expression down-modulated GFAP expression and altered glutamate uptake and release and proliferation in astrocytes. Aging Dis. 2023;14(1):152–69.

Article  PubMed  PubMed Central  Google Scholar 

Ali A, Farooqui SR, Rai J, Singh J, Kumar V, Mishra R et al. HIV-1 Nef promotes ubiquitination and proteasomal degradation of p53 tumor suppressor protein by using E6AP. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. 2020;529(4):1038–44.

Chugh P, Fan S, Planelles V, Maggirwar SB, Dewhurst S, Kim B. Infection of human immunodeficiency virus and intracellular viral Tat protein exert a pro-survival effect in a human microglial cell line. J Mol Biol. 2007;366(1):67–81.

Article  CAS  PubMed  Google Scholar 

McLemore MS, Haigentz M Jr, Smith RV, Nuovo GJ, Alos L, Cardesa A, et al. Head and neck squamous cell carcinomas in HIV-positive patients: a preliminary investigation of viral associations. Head Neck Pathol. 2010;4(2):97–105.

Article  PubMed  PubMed Central  Google Scholar 

Park S, Auyeung A, Lee DL, Lambert PF, Carchman EH, Sherer NM. HIV-1 protease inhibitors slow HPV16-Driven cell proliferation through targeted depletion of viral E6 and E7 oncoproteins. Cancers (Basel). 2021;13(5).

Souza. RP, Abreu GF, ALd et al. Rocha-Brischiliari. SC, Carvalho. MDd, Ferreira. EC,. Differences in the mutation of the p53 gene in exons 6 and 7 in cervical samples from HIV- and HPV-infected women. Infectious Agents and Cancer. 2013;8(1):38–42.

Barillari G, Palladino C, Bacigalupo I, Leone P, Falchi M, Ensoli B. Entrance of the Tat protein of HIV-1 into human uterine cervical carcinoma cells causes upregulation of HPV-E6 expression and a decrease in p53 protein levels. Oncol Lett. 2016;12(4):2389–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Makgoo L, Mosebi S, Mbita Z. Molecular Mechanisms of HIV protease inhibitors against HPV-Associated Cervical Cancer: restoration of TP53 tumour suppressor activities. Front Mol Biosci. 2022;9:875208.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harrod R, Nacsa J, Van Lint C, Hansen J, Karpova T, McNally J, et al. Human immunodeficiency virus type-1 Tat/co-activator acetyltransferase interactions inhibit p53Lys-320 acetylation and p53-responsive transcription. J Biol Chem. 2003;278(14):12310–8.

Article  CAS  PubMed  Google Scholar 

Guendel I, Carpio L, Easley R, Van Duyne R, Coley W, Agbottah E, et al. 9-Aminoacridine inhibition of HIV-1 Tat dependent transcription. Virol J. 2009;6:114–27.

Article  PubMed  PubMed Central  Google Scholar 

Ariumi Y, Kaida A, Hatanaka M, Shimotohno K. Functional cross-talk of HIV-1 Tat with p53 through its C-terminal domain. Biochem Biophys Res Commun. 2001;287(2):556–61.

Article  CAS  PubMed  Google Scholar 

Coley W, Kehn-Hall K, Van Duyne R, Kashanchi F. Novel HIV-1 therapeutics through targeting altered host cell pathways. Expert Opin Biol Ther. 2009;9(11):1369–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gruevska A, Moragrega AB, Galindo MJ, Esplugues JV, Blas-Garcia A, Apostolova N. p53 and p53-related mediators PAI-1 and IGFBP-3 are downregulated in peripheral blood mononuclear cells of HIV-patients exposed to non-nucleoside reverse transcriptase inhibitors. Antiviral Res. 2020;178:104784–95.

Article  CAS  PubMed  Google Scholar 

Poulose N, Forsythe N, Polonski A, Gregg G, Maguire S, Fuchs M, et al. VPRBP functions downstream of the androgen receptor and OGT to restrict p53 activation in prostate Cancer. Mol Cancer Res. 2022;20(7):1047–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi HK, Choi KC, Kang HB, Kim HC, Lee YH, Haam S, et al. Function of multiple lis-homology domain/WD-40 repeat-containing proteins in feed-forward transcriptional repression by silencing mediator for retinoic and thyroid receptor/nuclear receptor corepressor complexes. Mol Endocrinol. 2008;22(5):1093–104.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hrecka. K, Gierszewska. M, Kozaczkiewicz. SS, Swanson L, SK, Florens. L et al. Lentiviral Vpr usurps Cul4–DDB1[VprBP] E3 ubiquitin ligase to modulate cell cycle. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 2007;104(28):11778–83.

Kim K, Heo K, Choi J, Jackson S, Kim H, Xiong Y, et al. Vpr-binding protein antagonizes p53-mediated transcription via direct interaction with H3 tail. Mol Cell Biol. 2012;32(4):783–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif