Recent advances in 3D printing of biodegradable metals for orthopaedic applications

Ashammakhi N, et al. Minimally invasive and regenerative therapeutics. Adv Mater. 2019;31(1):1804041.

Article  Google Scholar 

Niinomi M. Recent metallic materials for biomedical applications. Metall Mater Trans A. 2002;33:477–86.

Article  Google Scholar 

Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8(11):3888–903.

Article  Google Scholar 

Memarian P, et al. Osteogenic properties of 3D-printed silica-carbon-calcite composite scaffolds: novel approach for personalized bone tissue regeneration. Int J Mol Sci. 2021;22(2):475.

Article  Google Scholar 

Vidal L, et al. Reconstruction of large skeletal defects: current clinical therapeutic strategies and future directions using 3D printing. Front Bioeng Biotechnol. 2020;8:61.

Article  Google Scholar 

Roffi A, et al. The role of three-dimensional scaffolds in treating long bone defects: evidence from preclinical and clinical literature—a systematic review. BioMed Res Int. 2017;2017:1–14.

Castilho M, et al. Application of a 3D printed customized implant for canine cruciate ligament treatment by tibial tuberosity advancement. Biofabrication. 2014;6(2):025005.

Article  Google Scholar 

Attarilar S, et al. 3D printing technologies in metallic implants: a thematic review on the techniques and procedures. Int J Bioprint. 2021;7(1):21–46.

Munir K, et al. Mechanical, corrosion, nanotribological, and biocompatibility properties of equal channel angular pressed Ti-28Nb-35.4 zr alloys for biomedical applications. Acta Biomater. 2022;149:387–98.

Article  Google Scholar 

Ni J, et al. Three-dimensional printing of metals for biomedical applications. Mater Today Bio. 2019;3:100024.

Article  Google Scholar 

Okutan B, et al. The combined effect of zinc and calcium on the biodegradation of ultrahigh-purity magnesium implants. Biomaterials Adv. 2023;146:213287.

Article  Google Scholar 

Zhao DW, et al. Calcium–zinc phosphate Chemical Conversion Coating facilitates the osteointegration of biodegradable zinc Alloy Implants by orchestrating macrophage phenotype. Adv Healthc Mater. 2023;12(9):2202537.

Qian J, et al. Osteogenic and angiogenic bioactive collagen entrapped calcium/zinc phosphates coating on biodegradable zn for orthopedic implant applications. Biomaterials Adv. 2022;136:212792.

Article  Google Scholar 

Istrate B, et al. Current research studies of Mg–Ca–Zn biodegradable alloys used as orthopedic implants. Crystals. 2022;12(10):1468.

Article  Google Scholar 

Lee M-K, et al. Accelerated biodegradation of iron-based implants via tantalum-implanted surface nanostructures. Bioactive Mater. 2022;9:239–50.

Article  MathSciNet  Google Scholar 

Xing F, et al. Recent progress in Mg-based alloys as a novel bioabsorbable biomaterials for orthopedic applications. J Magnesium Alloys. 2022;10(6):1428–56.

Article  Google Scholar 

Tsaramirsis G, et al. A modern approach towards an industry 4.0 model: From driving technologies to management. J Sens. 2022;2022:1–18.

Ahmadi M, et al. The role of Additive Manufacturing in the age of sustainable Manufacturing 4.0, in sustainable Manufacturing in Industry 4.0: Pathways and Practices. Singapore: Springer; 2023. p. 57–78.

Google Scholar 

Bose S, et al. Additive manufacturing of biomaterials. Prog Mater Sci. 2018;93:45–111.

Article  Google Scholar 

Gross BC, et al. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. ACS Publications. 2014;86(7):3240–53.

Kanwar S, Vijayavenkataraman S. Design of 3D printed scaffolds for bone tissue engineering: a review. Bioprinting. 2021;24:e00167.

Article  Google Scholar 

Ahmed KS, et al. Implementation of 3D printing and computer-aided design and manufacturing (CAD/CAM) in craniofacial reconstruction. J Craniofac Surg. 2022;33(6):1714–9.

Article  Google Scholar 

Wong KC. 3D-printed patient-specific applications in orthopedics. Orthop Res Rev. 2016;8:57–66.

Hespel AM, Wilhite R, Hudson J. Invited review-applications for 3D printers in veterinary medicine. Vet Radiol Ultrasound. 2014;55(4):347–58.

Article  Google Scholar 

Liaw C-Y, Guvendiren M. Current and emerging applications of 3D printing in medicine. Biofabrication. 2017;9(2):024102.

Article  Google Scholar 

Harrysson OL, Marcellin-Little DJ, Horn TJ. Applications of metal additive manufacturing in veterinary orthopedic surgery. Jom. 2015;67:647–54.

Article  Google Scholar 

Lee H-R, et al. An easy and economical way to produce a three-dimensional bone phantom in a dog with antebrachial deformities. Animals. 2020;10(9):1445.

Article  Google Scholar 

Kamio T et al. DICOM segmentation and STL creation for 3D printing: a process and software package comparison for osseous anatomy. 3D Print Med. 2020;6(17):1–12.

Tofail SA, et al. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today. 2018;21(1):22–37.

Article  Google Scholar 

Sames WJ, et al. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev. 2016;61(5):315–60.

Article  Google Scholar 

Konda Gokuldoss P, Kolla S, Eckert J. Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting—selection guidelines. materials. 2017;10(6):672.

Article  Google Scholar 

Chua CK, Leong KF. 3D Printing and additive manufacturing: principles and applications (with companion media pack)-of rapid prototyping. Singapore: World Scientific Publishing Company; 2014.

Shah K. Laser direct metal deposition of dissimilar and functionally graded alloys. The University of Manchester (United Kingdom). 2011. Student thesis: Phd.

Bandyopadhyay A, Bose S, Das S. 3D printing of biomaterials. MRS Bull. 2015;40(2):108–15.

Article  Google Scholar 

Beaman JJ, Deckard CR. Selective laser sintering with assisted powder handling. University of Texas System, assignee. U.S. Patent No. 4,938,816. United States patent. 1990.

Kruth J-P, et al. Lasers and materials in selective laser sintering. Assembly Autom. 2003;23(4):357–71.

Article  Google Scholar 

Frazier WE. Metal additive manufacturing: a review. J Mater Eng Perform. 2014;23:1917–28.

Article  Google Scholar 

Agarwala M, et al. Direct selective laser sintering of metals. Rapid Prototyp J. 1995;1(1):26–36.

Article  Google Scholar 

Pattanayak DK, et al. Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments. Acta Biomater. 2011;7(3):1398–406.

Article  Google Scholar 

Murr LE, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol. 2012;28(1):1–14.

Article  Google Scholar 

Sidambe AT. Biocompatibility of advanced manufactured titanium implants—A review. Materials. 2014;7(12):8168–88.

Article  Google Scholar 

Tan K, et al. Selective laser sintering of biocompatible polymers for applications in tissue engineering. Biomed Mater Eng. 2005;15(1–2):113–24.

Google Scholar 

Vandenbroucke B, Kruth JP. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J. 2007;13(4):196–203.

Ko SH, et al. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology. 2007;18(34):345202.

Article  Google Scholar 

Wang D, et al. Design and fabrication of a precision template for spine surgery using selective laser melting (SLM). Materials. 2016;9(7):608.

Article  Google Scholar 

Song C, et al. Personalized femoral component design and its direct manufacturing by selective laser melting. Rapid Prototyp J. 2016;22(2):330–7.

Van Noort R. The future of dental devices is digital. Dent Mater. 2012;28(1):3–12.

Article  Google Scholar 

Mullen L, et al. Selective Laser Melting: A regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials. The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2009;89(2):325–34.

Google Scholar 

Sing SL, et al. Laser and electron-beam powder‐bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthop Res. 2016;34(3):369–85.

Article  Google Scholar 

Selcuk C. Laser metal deposition for powder metallurgy parts. Powder Metall. 2011;54(2):94–9.

Google Scholar 

Ahsan MN, et al. A comparative study of laser direct metal deposition characteristics using gas and plasma-atomized Ti–6Al–4V powders. Materials Science and Engineering: A. 2011;528(25–26):7648–57.

Article  Google Scholar 

Dinda G, Song L, Mazumder J. Fabrication of Ti-6Al-4V scaffolds by direct metal deposition. Metall Mater Trans A. 2008;39:2914–22.

Article  Google Scholar 

Xue W, et al. Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater. 2007;3(6):1007–18.

Article  Google Scholar 

Krishna BV, Bose S, Bandyopadhyay A. Low stiffness porous Ti structures for load-bearing implants. Acta Biomater. 2007;3(6):997–1006.

Article  Google Scholar 

Bandyopadhyay A, et al. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater. 2010;6(4):1640–8.

Article  Google Scholar 

Lewis GK, Schlienger E. Practical considerations and capabilities for laser assisted direct metal deposition. Mater Design. 2000;21(4):417–23.

Article  Google Scholar 

DebRoy T, et al. Additive manufacturing of metallic components–process, structure and properties. Prog Mater Sci. 2018;92:112–224.

Article  Google Scholar 

Gao C, et al. Additive manufacturing technique-designed metallic porous implants for clinical application in orthopedics. RSC Adv. 2018;8(44):25210–27.

Article  Google Scholar 

Herzog D, et al. Additive manufacturing of metals. Acta Mater. 2016;117:371–92.

Article  Google Scholar 

Murr L. Metallurgy of additive manufacturing: examples from electron beam melting. Additive Manuf. 2015;5:40–53.

Article  Google Scholar 

Guo N, Leu MC. Additive manufacturing: technology, applications and research needs. Front Mech Eng. 2013;8:215–43.

Article  Google Scholar 

Al-Bermani S, et al. The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti-6Al-4V. Metall Mater Trans A. 2010;41:3422–34.

Zergioti I, et al. Microdeposition of metals by femtosecond excimer laser. Appl Surf Sci. 1998;127:601–5.

Article  Google Scholar 

Delaporte P, Alloncle A-P. Laser-induced forward transfer: a high resolution additive manufacturing technology. Opt Laser Technol. 2016;78:33–41.

Article  Google Scholar 

Toth Z, et al. Pulsed laser ablation mechanisms of thin metal films. Computer-controlled microshaping. Proceedings of SPIE - the International Society for Optical Engineering, 1999;3822:18–26.

Omatsu T, et al. Laser-induced forward-transfer with light possessing orbital angular momentum. J Photochem Photobiol C. 2022;52:100535–48.

留言 (0)

沒有登入
gif