Undersampling and cumulative class re-decision methods to improve detection of agitation in people with dementia

World Health Origination: Dementia. http://www.who.int/news-room/fact-sheets/detail/dementia (2022)

Cerejeira J, Lagarto L, Mukaetova-Ladinska EB. Behavioral and psychological symptoms of dementia. Front Neurol. 2012;3:73.

Article  Google Scholar 

Brodaty H, Connors MH, Xu J, Woodward M, Ames D. PRIME study group: predictors of institutionalization in dementia: a three year longitudinal study. J Alzheimer’s Dis. 2014;40(1):221–6.

Article  Google Scholar 

Rosen J, Burgio L, Kollar M, Cain M, Allison M, Fogleman M, Michael M, Zubenko GS. The Pittsburgh agitation scale: a user-friendly instrument for rating agitation in dementia patients. Am J Geriatr Psychiatry. 1994;2(1):52–9.

Article  Google Scholar 

Cohen-Mansfield J. Instruction manual for the Cohen-Mansfield agitation inventory (CMAI), vol. 1991. Bethesda: Research Institute of the Hebrew Home of Greater Washington; 1991.

Google Scholar 

Khan SS, Spasojevic S, Nogas J, Ye B, Mihailidis A, Iaboni A, Wang A, Martin LS, Newman K. Agitation detection in people living with dementia using multimodal sensors. In: 2019 41st Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE; 2019. p. 3588–91.

Khan SS, Mishra PK, Javed N, Ye B, Newman K, Mihailidis A, Iaboni A. Unsupervised deep learning to detect agitation from videos in people with dementia. IEEE Access. 2022;10:10349–58.

Article  Google Scholar 

Cote AC, Phelps RJ, Kabiri NS, Bhangu JS, Thomas KK. Evaluation of wearable technology in dementia: a systematic review and meta-analysis. Front Med. 2021;7: 501104.

Article  Google Scholar 

Iaboni A, Spasojevic S, Newman K, Schindel Martin L, Wang A, Ye B, Mihailidis A, Khan SS. Wearable multimodal sensors for the detection of behavioral and psychological symptoms of dementia using personalized machine learning models. Alzheimer’s Dement Diagn Assess Dis Monit. 2022;14(1):12305.

Google Scholar 

Husebo BS, Heintz HL, Berge LI, Owoyemi P, Rahman AT, Vahia IV. Sensing technology to monitor behavioral and psychological symptoms and to assess treatment response in people with dementia. A systematic review. Front Pharmacol. 2020;10:1699.

Article  Google Scholar 

Spasojevic S, Nogas J, Iaboni A, Ye B, Mihailidis A, Wang A, Li SJ, Martin LS, Newman K, Khan SS. A pilot study to detect agitation in people living with dementia using multi-modal sensors. J Healthc Inform Res. 2021;5(3):342–58.

Article  Google Scholar 

Dubey R, Zhou J, Wang Y, Thompson PM, Ye J, Initiative ADN, et al. Analysis of sampling techniques for imbalanced data: an n= 648 ADNI study. Neuroimage. 2014;87:220–41.

Article  Google Scholar 

Farquad MAH, Bose I. Preprocessing unbalanced data using support vector machine. Decis Support Syst. 2012;53(1):226–33.

Article  Google Scholar 

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. Smote: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321–57.

Article  MATH  Google Scholar 

He H, Bai Y, Garcia EA, Li S. Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE international joint conference on neural networks. IEEE, 2008; p. 1322–8.

Moniz N, Branco P, Torgo L. Resampling strategies for imbalanced time series forecasting. Int J Data Sci Anal. 2017;3(3):161–81.

Article  Google Scholar 

Drummond C, Holte RC, et al. C4. 5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling. In: Workshop on learning from imbalanced datasets II, 2003; vol. 11, p. 1–8.

Pozo RF, González ABR, Wilby MR, Díaz JJV, Matesanz MV. Prediction of on-street parking level of service based on random undersampling decision trees. IEEE Trans Intell Transp Syst. 2021;23(7):8327–36.

Article  Google Scholar 

Mujeeb S, Javaid N, Ahmed A, Gulfam SM, Qasim U, Shafiq M, Choi J-G. Electricity theft detection with automatic labeling and enhanced RUSBoost classification using differential evolution and jaya algorithm. IEEE Access. 2021;9:128521–39.

Article  Google Scholar 

Hancock J, Khoshgoftaar TM, Johnson JM. The effects of random undersampling for big data medicare fraud detection. In: 2022 IEEE international conference on service-oriented system engineering (SOSE). IEEE, 2022; p. 141–6.

Saripuddin M, Suliman A, Syarmila Sameon S, Jorgensen BN. Random undersampling on imbalance time series data for anomaly detection. In: 2021 The 4th international conference on machine learning and machine intelligence, 2021; p. 151–6.

Yen S-J, Lee Y-S. Cluster-based under-sampling approaches for imbalanced data distributions. Expert Syst Appl. 2009;36(3):5718–27.

Article  Google Scholar 

Huang Y, Liu D-R, Lee S-J, Hsu C-H, Liu Y-G. A boosting resampling method for regression based on a conditional variational autoencoder. Inf Sci. 2022;590:90–105.

Article  Google Scholar 

Vaizman Y, Ellis K, Lanckriet G. Recognizing detailed human context in the wild from smartphones and smartwatches. IEEE Pervasive Comput. 2017;16(4):62–74.

Article  Google Scholar 

Khan SS, Zhu T, Ye B, Mihailidis A, Iaboni A, Newman K, Wang AH, Martin LS. Daad: a framework for detecting agitation and aggression in people living with dementia using a novel multi-modal sensor network. In: 2017 IEEE international conference on data mining workshops (ICDMW). IEEE, 2017; p. 703–10.

van Lier HG, Pieterse ME, Garde A, Postel MG, de Haan HA, Vollenbroek-Hutten MM, Schraagen JM, Noordzij ML. A standardized validity assessment protocol for physiological signals from wearable technology: methodological underpinnings and an application to the e4 biosensor. Behav Res Methods. 2020;52(2):607–29.

Article  Google Scholar 

Pietilä J, Mehrang S, Tolonen J, Helander E, Jimison H, Pavel M, Korhonen I. Evaluation of the accuracy and reliability for photoplethysmography based heart rate and beat-to-beat detection during daily activities. In: EMBEC & NBC 2017. Springer, 2017; p. 145–8.

Wang C, Lu W, Narayanan MR, Redmond SJ, Lovell NH. Low-power technologies for wearable telecare and telehealth systems: a review. Biomed Eng Lett. 2015;5:1–9.

Article  Google Scholar 

Park KS, Choi SH. Smart technologies toward sleep monitoring at home. Biomed Eng Lett. 2019;9:73–85.

Article  Google Scholar 

Gerych W, Buquicchio L, Chandrasekaran K, Alajaji A, Mansoor H, Murphy A, Rundensteiner E, Agu E. Burstpu: Classification of weakly labeled datasets with sequential bias. In: 2020 IEEE international conference on big Data (Big Data). IEEE, 2020; p. 147–54.

Bianco GD, Duarte D, Gonçalves MA. Reducing the user labeling effort in effective high recall tasks by fine-tuning active learning. J Intell Inf Syst. 2023. https://doi.org/10.1007/s10844-022-00772-y.

Article  Google Scholar 

Shojaedini SV, Beirami MJ. Mobile sensor based human activity recognition: distinguishing of challenging activities by applying long short-term memory deep learning modified by residual network concept. Biomed Eng Lett. 2020;10:419–30.

Article  Google Scholar 

Gopali S, Abri F, Siami-Namini S, Namin AS. A comparison of TCN and LSTM models in detecting anomalies in time series data. In: 2021 IEEE international conference on big data (big data). IEEE, 2021; p. 2415–20.

留言 (0)

沒有登入
gif