Selection of appropriate non-clinical animal models to ensure translatability of novel AAV-gene therapies to the clinic

EMA. EMA - Guideline on the quality, non-clinical and clinical aspects of gene therapy medicinal products. 2018; Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-quality-non-clinical-clinical-aspects-gene-therapy-medicinal-products_en.pdf.

EPAR - Luxturna [Internet]. 2019. Available from: https://www.ema.europa.eu/en/documents/assessment-report/luxturna-epar-public-assessment-report_en.pdf.

EPAR - Zolgensma [Internet]. 2020. Available from: https://www.ema.europa.eu/en/documents/assessment-report/zolgensma-epar-public-assessment-report_en.pdf.

EMA. EPAR - Glybera [Internet]. 2012. Available from: https://www.ema.europa.eu/en/documents/assessment-report/glybera-epar-public-assessment-report_en.pdf.

Roctavian-EMA [Internet]. 2022. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/roctavian-0.

EMA Upstaza [Internet]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/upstaza.

EMA. EPAR - Hemgenix [Internet]. 2022. Available from: https://www.ema.europa.eu/en/documents/assessment-report/hemgenix-epar-public-assessment-report_en.pdf.

EMA. Guideline on quality, non-clinical and clinical requirements for investigational advanced therapy medicinal products in clinical trials [Internet]. 2019. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-quality-non-clinical-clinical-requirements-investigational-advanced-therapy_en.pdf.

EMA. GUIDELINE ON THE NON-CLINICAL STUDIES REQUIRED BEFORE FIRST CLINICAL USE OF GENE THERAPY MEDICINAL PRODUCTS [Internet]. 2008. Available from: ema.europa.eu/en/documents/scientific-guideline/guideline-non-clinical-studies-required-first-clinical-use-gene-therapy-medicinal-products_en.pdf.

Tucci F, Galimberti S, Naldini L, Valsecchi MG, Aiuti AA. systematic review and meta-analysis of gene therapy with hematopoietic stem and progenitor cells for monogenic disorders. Nat Commun. 2022;13:1315.

Prakash V, Moore M, Yáñez-Muñoz RJ. Current progress in therapeutic gene editing for monogenic diseases. Mol Ther. 2016;24:465–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kirschner J, Cathomen T. Gene therapy for monogenic inherited disorders. Opportunities and challenges. Deutsches Arzteblatt Int. 2020;117:878–85.

Barron JC, Hurley EP, Parsons MP. Huntingtin and the Synapse. Front Cell Neurosci. 2021;15:1–18.

Article  Google Scholar 

McColgan P, Tabrizi SJ. Huntington’s disease: a clinical review. Eur J Neurol. 2018;25:24–34.

Article  CAS  PubMed  Google Scholar 

Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol [Internet]. 2020;16:529–46. Available from: https://doi.org/10.1038/s41582-020-0389-4.

Article  PubMed  Google Scholar 

Oura S, Noda T, Morimura N, Hitoshi S, Nishimasu H, Nagai Y, et al. Precise CAG repeat contraction in a Huntington’s Disease mouse model is enabled by gene editing with SpCas9-NG. Commun Biol. 2021;4:771.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das SK, Menezes ME, Bhatia S, Wang XY, Emdad L, Sarkar D, et al. Gene Therapies for Cancer: Strategies, Challenges and Successes. J Cell Physiol. 2015;230:259–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11:69.

Article  PubMed  PubMed Central  Google Scholar 

Balakrishnan B, Jayandharan G. Basic Biology of Adeno-Associated Virus (AAV) Vectors Used in Gene Therapy. Curr Gene Ther. 2014;14:86–100.

Article  CAS  PubMed  Google Scholar 

Wu Z, Asokan A, Samulski RJ. Adeno-associated Virus Serotypes: Vector Toolkit for Human Gene Therapy. Mol Ther. 2006;14:316–27.

Article  CAS  PubMed  Google Scholar 

Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, et al. Clades of Adeno-Associated Viruses Are Widely Disseminated in Human Tissues. J Virol. 2004;78:6381–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agbandje-McKenna M, Kleinschmidt J. AAV capsid structure and cell interactions. Methods Mol Biol. 2011;807:47–92.

Article  CAS  PubMed  Google Scholar 

Weinmann J, Grimm D. Next-generation AAV vectors for clinical use: an ever-accelerating race. Virus Genes. 2017;53:707–13.

Article  CAS  PubMed  Google Scholar 

Ertl HCJ. T Cell-Mediated Immune Responses to AAV and AAV Vectors. Front Immunol. 2021;12:1–11.

Article  Google Scholar 

Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: Implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21:704–12.

Article  CAS  PubMed  Google Scholar 

Grimm D, Zolotukhin S. E Pluribus Unum: 50 Years of Research, Millions of Viruses, and One Goal-Tailored Acceleration of AAV Evolution. Mol Ther. 2015;23:1819–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kotterman MA, Schaffer DV. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet. 2014;15:445–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartel M, Schaffer D, Büning H. Enhancing the clinical potential of aav vectors by capsid engineering to evade pre-existing immunity. Front Microbiol. 2011;2:204.

Article  PubMed  PubMed Central  Google Scholar 

Bartel MA, Weinstein JR, Schaffer DV. Directed evolution of novel adeno-associated viruses for therapeutic gene delivery. Gene Ther. 2012;19:694–700.

Article  CAS  PubMed  Google Scholar 

Au HKE, Isalan M, Mielcarek M. Gene Therapy Advances: A Meta-Analysis of AAV Usage in Clinical Settings. Front Med. 2022;8:809118.

Article  Google Scholar 

Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduc Targeted Ther. 2021;6:53.

Article  CAS  Google Scholar 

Hacker UT, Bentler M, Kaniowska D, Morgan M, Büning H. Towards clinical implementation of adeno-associated virus (Aav) vectors for cancer gene therapy: Current status and future perspectives. Cancers. 2020;12:1889.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonçalves MAFV. Adeno-associated virus: From defective virus to effective vector. Virol J. 2005;2:1–17.

Article  Google Scholar 

Erles K, Rohde V, Thaele M, Roth S, Edler L, Schlehofer JR. DNA of adeno-associated virus (AAV) in testicular tissue and in abnormal semen samples. Hum Reprod. 2001;16:2333–7.

Article  CAS  PubMed  Google Scholar 

He X, Urip BA, Zhang Z, Ngan CC, Feng B. Evolving AAV-delivered therapeutics towards ultimate cures. J Mol Med. 2021;99:593–617.

Article  PubMed  Google Scholar 

Arruda VR, Fields PA, Milner R, Wainwright L, De Miguel MP, Donovan PJ, et al. Lack of germline transmission of vector sequences following systemic administration of recombinant AAV-2 vector in males. Mol Ther. 2001;4:586–92.

Article  CAS  PubMed  Google Scholar 

Favaro P, Downey HD, Shangzhen Zhou J, Fraser Wright J, Hauck B, Mingozzi F, et al. Host and vector-dependent effects on the risk of germline transmission of AAV vectors. Mol Ther. 2009;17:1022–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaudet D, Méthot J, Déry S, Brisson D, Essiembre C, Tremblay G, et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPL S447X) gene therapy for lipoprotein lipase deficiency: An open-label trial. Gene Ther. 2013;20:361–9.

Article  CAS  PubMed  Google Scholar 

Colella P, Ronzitti G, Mingozzi F. Emerging Issues in AAV-Mediated In Vivo Gene Therapy. Mol Ther - Methods Clin Dev. 2018;8:87–104. Available from: https://doi.org/10.1016/j.omtm.2017.11.007.

Article  CAS  PubMed  Google Scholar 

Smith RH. Adeno-associated virus integration: virus versus vector. Gene Ther. 2008;15:817–22.

Article  CAS  PubMed  Google Scholar 

Valdmanis PN, Lisowski L, Kay MA. RAAV-Mediated tumorigenesis: Still unresolved after an AAV assault. Mol Ther. 2012;20:2014–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li H, Malani N, Hamilton SR, Schlachterman A, Bussadori G, Edmonson SE, et al. Assessing the potential for AAV vector genotoxicity in a murine model. Blood. 2011;117:3311–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

At FDA meeting, gene therapy experts wrestle with field’s blindspots [Internet]. 2021. Available from: https://www.biopharmadive.com/news/fda-gene-therapy-meeting-safety-cancer-liver/606088/.

Chandler RJ, LaFave MC, Varshney GK, Burgess SM, Venditti CP. Genotoxicity in mice following AAV gene delivery: A safety concern for human gene therapy? Mol Ther. 2016;24:198–201.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaiser J. Liver tumor in gene therapy recipient raises concerns about virus widely used in treatment. Science. 2020. Available from: https://www.science.org/content/article/liver-tumor-gene-therapy-recipient-raises-concerns-about-virus-widely-used-treatment#:~:text=Investigation%20of%20hemophilia%20patient%20will,associated%20virus%20in%20causing%20cancer&text=It's%20troubling%20news%20that%20gene,has%20developed%20a%20liver%20tumor.

Bulaklak K, Gersbach CA. The once and future gene therapy. Nat Commun. 2020;11:5820.

留言 (0)

沒有登入
gif