Development of a new coordinate calibration phantom for a light-section-based optical surface monitoring system

Freislederer P, Kügele M, Öllers M, Swinnen A, Sauer TO, Bert C, et al. Recent advances in surface-guided radiation therapy. Radiat Oncol Radiat Oncol. 2020;15:1–11.

Google Scholar 

Al-Hallaq HA, Cerviño L, Gutierrez AN, Havnen-Smith A, Higgins SA, Kügele M, et al. AAPM task group report 302: surface-guided radiotherapy. Med Phys. 2022;49:e82–112. https://doi.org/10.1002/mp.15532.

Article  PubMed  Google Scholar 

Batista V, Meyer J, Kügele M, Al-Hallaq H. Clinical paradigms and challenges in surface guided radiation therapy: where do we go from here? [Internet]. Radiother Oncol. 2020;153:34–42. https://doi.org/10.1016/j.radonc.2020.09.041.

Article  PubMed  Google Scholar 

Wikström K, Nilsson K, Isacsson U, Ahnesjö A. A comparison of patient position displacements from body surface laser scanning and cone beam CT bone registrations for radiotherapy of pelvic targets. Acta Oncol. 2014;53:268–77. https://doi.org/10.3109/0284186X.2013.802836.

Article  PubMed  Google Scholar 

Ma Z, Zhang W, Su Y, Liu P, Pan Y, Zhang G, et al. Optical surface management system for patient positioning in interfractional breast cancer radiotherapy. BioMed Res Int. 2018;2018:6415497. https://doi.org/10.1155/2018/6415497.

Article  PubMed  PubMed Central  Google Scholar 

Djajaputra D, Li S. Real-time 3D surface-image-guided beam set-up in radiotherapy of breast cancer. Med Phys. 2005;32:65–75. https://doi.org/10.1118/1.1828251.

Article  PubMed  Google Scholar 

Haraldsson A, Ceberg S, Ceberg C, Bäck S, Engelholm S, Engström PE. Surface-guided tomotherapy improves positioning and reduces treatment time: a retrospective analysis of 16 835 treatment fractions. J Appl Clin Med Phys. 2020;21:139–48. https://doi.org/10.1002/acm2.12936.

Article  PubMed  PubMed Central  Google Scholar 

Brahme A, Nyman P, Skatt B. 4D laser camera for accurate patient positioning, collision avoidance, image fusion and adaptive approaches during diagnostic and therapeutic procedures. Med Phys. 2008;35:1670–81. https://doi.org/10.1118/1.2889720.

Article  PubMed  Google Scholar 

Placht S, Stancanello J, Schaller C, Balda M, Angelopoulou E. Fast time-of-flight camera based surface registration for radiotherapy patient positioning. Med Phys. 2012;39:4–17. https://doi.org/10.1118/1.3664006.

Article  PubMed  Google Scholar 

Bert C, Metheany KG, Doppke K, Chen GTY. A phantom evaluation of a stereovision surface imaging system for radiotherapy patient set-up. Med Phys. 2005;32:2753–62. https://doi.org/10.1118/1.1984263.

Article  PubMed  Google Scholar 

Lindl BL, Müller RG, Lang S, Herraiz Lablanca MD, Klöck S. TOPOS: A new topometric patient positioning and tracking system for radiation therapy based on structured white light. Med Phys. 2013;40:042701. https://doi.org/10.1118/1.4794927.

Article  PubMed  Google Scholar 

Komori R, Hayashi N, Saito T, Amma H, Muraki Y, Nozue M. Improvement of patient localization repeatability using a light-section based optical surface guidance system in a pre-positioning procedure. Cancer/Radiothérapie. 2022;26:547–56. https://doi.org/10.1016/j.canrad.2021.07.038.

Article  CAS  PubMed  Google Scholar 

Pae B, Chen D. Miniature submarine using near-infrared spectroscopy to detect and collect microplastics. Int J High Sch Res. 2022;4(5):88–93. https://doi.org/10.36838/v4i5.14.

Article  Google Scholar 

Dunn DS, McClure DJ. Infrared reflection–absorption spectroscopy of surface modified polyester films. J Vac Sci Technol A Vacuum Surf Film. 1987;5(4):1327–30. https://doi.org/10.1116/1.574762.

Article  CAS  Google Scholar 

Awad OI, Ma X, Kamil M, Ali OM, Ma Y, Shuai S. Overview of polyoxymethylene dimethyl ether additive as an eco-friendly fuel for an internal combustion engine: current application and environmental impacts. Sci Total Environ. 2020;715:136849. https://doi.org/10.1016/j.scitotenv.2020.136849.

Article  CAS  PubMed  Google Scholar 

Duan H, Jia M, Wang H, Li Y, Xia G. Control of low-temperature polyoxymethylene dimethyl ethers (PODEn)/gasoline combustion considering fuel concentration, fuel reactivity, and intake temperature at low loads. Fuel. 2023. https://doi.org/10.1016/j.fuel.2022.126823.

Article  Google Scholar 

Schreier VN, Appenzeller-Herzog C, Brüschweiler BJ, Geueke B, Wilks MF, Simat TJ, et al. Evaluating the food safety and risk assessment evidence-base of polyethylene terephthalate oligomers: protocol for a systematic evidence map. Environ Int. 2022;167:107387. https://doi.org/10.1016/j.envint.2022.107387.

Article  CAS  PubMed  Google Scholar 

Park HJ, Lee YJ, Kim MR, Kim KM. Safety of polyethylene terephthalate food containers evaluated by HPLC, migration test, and estimated daily intake. J Food Sci. 2008;73:T83–9. https://doi.org/10.1111/j.1750-3841.2008.00840.x.

Article  CAS  PubMed  Google Scholar 

Saito M, Ueda K, Suzuki H, Komiyama T, Marino K, Aoki S, et al. Evaluation of the detection accuracy of set-up for various treatment sites using surface-guided radiotherapy system, VOXELAN: a phantom study. J Radiat Res. 2022;63:435–42. https://doi.org/10.1093/jrr/rrac015.

Article  PubMed  PubMed Central  Google Scholar 

Kanakavelu N, Ravindran AM, Samuel EJJ. Evaluation of mechanical and geometric accuracy of two different image guidance systems in radiotherapy. Reports Pract Oncol Radiother. 2016;21:259–65.

Article  Google Scholar 

Gao H, Gu Q, Takaki T, Ishii I. A self-projected light-section method for fast three-dimensional shape inspection. Int J Optomechatronics. 2012;6:289–303. https://doi.org/10.1080/15599612.2012.715725.

Article  Google Scholar 

Hayashi N, Obata Y, Uchiyama Y, Mori Y, Hashizume C, Kobayashi T. Assessment of spatial uncertainties in the radiotherapy process with the novalis system. Int J Radiat Oncol Biol Phys. 2009;75(2):549–57. https://doi.org/10.1016/j.ijrobp.2009.02.080.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif