Maenner MJ, Shaw KA, Bakian AV, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years — Autism and developmental disabilities monitoring network, 11 sites, United States, 2018. MMWR. 2021;70(11):1–16.
PubMed PubMed Central Google Scholar
American psychiatric association. Diagnostic and statistical manual of mental disorders. 5th ed. American psychiatric association; 2013.
Hisle-Gorman E, Susi A, Stokes T, Gorman G, Erdie-Lalena C, Nylund CM. Prenatal, perinatal, and neonatal risk factors of autism spectrum disorder. Pediatr Res. 2018;84(2):190–8.
Krakowiak P, Walker CK, Bremer AA, et al. Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics. 2012;129(5):e1121–8.
Article PubMed PubMed Central Google Scholar
Nahum Sacks K, Friger M, Shoham-Vardi I, et al. Prenatal exposure to gestational diabetes mellitus as an independent risk factor for long-term neuropsychiatric morbidity of the offspring. Am J Obstet Gynecol. 2016;215(3):380.e1-7.
Park BY, Yao R, Tierney E, et al. The association between maternal lipid profile after birth and offspring risk of autism spectrum disorder. Ann Epidemiol. 2021;53:50-55.e1.
Wang C, Geng H, Liu W, Zhang G. Prenatal, perinatal, and postnatal factors associated with autism: a meta-analysis. Medicine. 2017;96(18):e6696.
Article CAS PubMed PubMed Central Google Scholar
Watterberg KL. Adrenocortical function and dysfunction in the fetus and neonate. Semin Neonatol: SN. 2004;9(1):13–21.
Bilder DA, Bakian AV, Viskochil J, et al. Maternal prenatal weight gain and autism spectrum disorders. Pediatrics. 2013;132(5):e1276–83.
Article PubMed PubMed Central Google Scholar
Dodds L, Fell DB, Shea S, Armson BA, Allen AC, Bryson S. The role of prenatal, obstetric and neonatal factors in the development of autism. J Autism Dev Disord. 2011;41(7):891–902.
Lyall K, Ning X, Aschner JL, et al. Environmental influences on child health outcomes OBOPCF. Cardiometabolic pregnancy complications in association with autism-related traits as measured by the social responsiveness scale in ECHO. Am J Epidemiol. 2022;191(8):1407–19.
Article PubMed PubMed Central Google Scholar
Maher GM, O’Keeffe GW, Dalman C, et al. Association between preeclampsia and autism spectrum disorder: a population-based study. J Child Psychol Psychiatry. 2020;61(2):131–9.
Mor G, Cardenas I, Abrahams V, Guller S. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann NY Acad Sci. 2011;1221(1):80–7.
Article CAS PubMed Google Scholar
Mastorakos G, Ilias I. Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartum. Ann NY Acad Sci. 2003;997(1):136–49.
Article CAS PubMed Google Scholar
Kampmann U, Knorr S, Fuglsang J, Ovesen P. Determinants of maternal insulin resistance during pregnancy: an updated overview. J Diabetes Res. 2019;2019:1–9.
Baz B, Riveline JP, Gautier JF. Endocrinology of pregnancy: gestational diabetes mellitus: definition, aetiological and clinical aspects. Eur J Endocrinol. 2016;174(2):R43–51.
Article CAS PubMed Google Scholar
Robinson DP, Klein SL. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm Behav. 2012;62(3):263–71.
Article CAS PubMed PubMed Central Google Scholar
Kinney DK, Miller AM, Crowley DJ, Huang E, Gerber E. Autism prevalence following prenatal exposure to hurricanes and tropical storms in Louisiana. J Autism Dev Disord. 2008;38(3):481–8.
Beversdorf DQ, Manning SE, Hillier A, et al. Timing of prenatal stressors and autism. J Autism Dev Disord. 2005;35(4):471–8.
Article CAS PubMed Google Scholar
Howland MA, Sandman CA, Glynn LM. Developmental origins of the human hypothalamic-pituitary-adrenal axis. Expert Rev Endocrinol Metab. 2017;12(50):321–39.
Article CAS PubMed PubMed Central Google Scholar
Moisiadis VG, Matthews SG. Glucocorticoids and fetal programming part 1: outcomes. Nat Rev Endocrinol. 2014;10(7):391–402.
Article CAS PubMed Google Scholar
Montenegro YHA, Nascimento DQ, Assis TO, Santos-Lopes SSD. The epigenetics of the hypothalamic-pituitary-adrenal axis in fetal development. Ann Hum Genet. 2019;83(4):195–213.
Reynolds RM. Glucocorticoid excess and the developmental origins of disease: two decades of testing the hypothesis–2012 curt richter award winner. Psychoneuroendocrinology. 2013;38(1):1–11.
Article CAS PubMed Google Scholar
Zerbo O, Traglia M, Yoshida C, et al. Maternal mid-pregnancy C-reactive protein and risk of autism spectrum disorders: the early markers for autism study. Transl Psychiatry. 2016;6(4):e783.
Article CAS PubMed PubMed Central Google Scholar
Brown AS, Sourander A, Hinkka-Yli-Salomäki S, McKeague IW, Sundvall J, Surcel HM. Elevated maternal C-reactive protein and autism in a national birth cohort. Mol Psychiatry. 2014;19(2):259–64.
Article CAS PubMed Google Scholar
Goines PE, Croen LA, Braunschweig D, et al. Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: a case-control study. Mol Autism. 2011;2:13.
Article CAS PubMed PubMed Central Google Scholar
Jones KL, Croen LA, Yoshida CK, et al. Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation. Mol Psychiatry. 2017;22(2):273–9.
Article CAS PubMed Google Scholar
Windham GC, Lyall K, Anderson M, Kharrazi M. Autism spectrum disorder risk in relation to maternal mid-pregnancy serum hormone and protein markers from prenatal screening in California. J Autism Dev Disord. 2015;46(2):478–88.
Baron-Cohen S, Auyeung B, Nørgaard-Pedersen B, et al. Elevated fetal steroidogenic activity in autism. Mol Psychiatry. 2014;20(3):369–76.
Article PubMed PubMed Central Google Scholar
Bilder DA, Esplin MS, Coon H, et al. Early second trimester maternal serum steroid-related biomarkers associated with autism spectrum disorder. J Autism Dev Disord. 2019;49(11):4572–83.
Article PubMed PubMed Central Google Scholar
Baron-Cohen S, Tsompanidis A, Auyeung B, et al. Foetal oestrogens and autism. Mol Psychiatry. 2020;25(11):2970–8.
Article CAS PubMed Google Scholar
Hammond GL. Plasma steroid-binding proteins: primary gatekeepers of steroid hormone action. J Endocr. 2016;230:R13–25.
Article CAS PubMed Google Scholar
Pepe GJ, Waddell BJ, Albrecht ED. Activation of the baboon fetal hypothalamic-pituitary-adrenocortical axis at midgestation by estrogen-induced changes in placental corticosteroid metabolism. Endocrinology. 1990;127(6):3117–23.
Article CAS PubMed Google Scholar
Caglar GS, Ozdemir ED, Cengiz SD, Demirtaş S. Sex-hormone-binding globulin early in pregnancy for the prediction of severe gestational diabetes mellitus and related complications. J Obstet Gynaecol Res. 2012;38(11):1286–93.
Bartha JL, Comino-Delgado R, Romero-Carmona R, Gomez-Jaen MC. Sex hormone-binding globulin in gestational diabetes. Acta Obstet Gynecol Scand. 2000;79(10):839–45.
Kopp HP, Festa A, Krugluger W, Schernthaner G. Low levels of sex-hormone-binding globulin predict insulin requirement in patients with gestational diabetes mellitus. Exp Clin Endocrinol Diabetes. 2001;109(7):365–9.
Article CAS PubMed Google Scholar
Smirnakis KV, Plati A, Wolf M, Thadhani R, Ecker JL. Predicting gestational diabetes: choosing the optimal early serum marker. Am J Obstet Gynecol. 2007;196(4):410.
Tawfeek MA, Alfadhli EM, Alayoubi AM, El-Beshbishy HA, Habib FA. Sex hormone binding globulin as a valuable biochemical marker in predicting gestational diabetes mellitus. BMC Womens Health. 2017;17(1):18.
Article PubMed PubMed Central Google Scholar
Li MY, Rawal S, Hinkle SN, et al. Sex hormone-binding globulin, cardiometabolic biomarkers, and gestational diabetes: a longitudinal study and meta-analysis. Matern Fetal Med. 2020;2(1):2–9.
Comments (0)