Genomic and Phenotypic Biomarkers for Precision Medicine Guidance in Advanced Prostate Cancer

Sung H, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

Article  PubMed  Google Scholar 

Giunta EF, et al. Molecular characterization of prostate cancers in the precision medicine era. Cancers. 2021;13(19):4771.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cornford P, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol. 2017;71(4):630–42.

Article  PubMed  Google Scholar 

Van Poppel H, et al. Serum PSA-based early detection of prostate cancer in Europe and globally: past, present and future. Nature Reviews Urology. 2022;19(9):562–72.

Article  PubMed  Google Scholar 

Eyrich NW, Morgan TM, Tosoian JJ. Biomarkers for detection of clinically significant prostate cancer: contemporary clinical data and future directions. Transl Androl Urol. 2021;10(7):3091.

Article  PubMed  PubMed Central  Google Scholar 

Porzycki P, Ciszkowicz E. Modern biomarkers in prostate cancer diagnosis. Central Eur J Urol. 2020;73(3):300.

CAS  Google Scholar 

Erho N, et al. Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS ONE. 2013;8(6): e66855.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farashi S, et al. Post-GWAS in prostate cancer: from genetic association to biological contribution. Nat Rev Cancer. 2019;19(1):46–59.

Article  CAS  PubMed  Google Scholar 

Lewis ACF, Green RC. Polygenic risk scores in the clinic: new perspectives needed on familiar ethical issues. Genome Med. 2021;13(1):14.

Article  PubMed  PubMed Central  Google Scholar 

Sipeky C, et al. Prostate cancer risk prediction using a polygenic risk score. Sci Rep. 2020;10(1):1–7.

Article  Google Scholar 

Fujita K, Nonomura N. Role of androgen receptor in prostate cancer: a review. World J Men’s health. 2019;37(3):288–95.

Article  Google Scholar 

Hägglöf C, Bergh A. The stroma—a key regulator in prostate function and malignancy. Cancers. 2012;4(2):531–48.

Article  PubMed  PubMed Central  Google Scholar 

Jernberg E, Bergh A, Wikström P. Clinical relevance of androgen receptor alterations in prostate cancer. Endocr Connect. 2017;6(8):R146–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steinestel J, et al. Detecting predictive androgen receptor modifications in circulating prostate cancer cells. Oncotarget. 2019;10(41):4213.

Article  PubMed  Google Scholar 

Thoma C. HSD3B1 genotype predicts castration resistance. Nat Rev Urol. 2020;17(4):193–193.

Article  PubMed  Google Scholar 

Agarwal N, et al. Independent validation of effect of hsd3b1 genotype on response to androgen-deprivation therapy in prostate cancer. JAMA Oncol. 2017;3(6):856–7.

Article  PubMed  PubMed Central  Google Scholar 

Shiota M, et al. Association of missense polymorphism in HSD3B1 with outcomes among men with prostate cancer treated with androgen-deprivation therapy or abiraterone. JAMA Netw Open. 2019;2(2):e190115–e190115.

Article  PubMed  PubMed Central  Google Scholar 

Ferraldeschi R, et al. PTEN protein loss and clinical outcome from castration-resistant prostate cancer treated with abiraterone acetate. Eur Urol. 2015;67(4):795–802.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rescigno P, et al. Docetaxel treatment in PTEN-and ERG-aberrant metastatic prostate cancers. Eur Urol Oncol. 2018;1(1):71–7.

Article  PubMed  PubMed Central  Google Scholar 

Christenson ES, Antonarakis ES. PARP inhibitors for homologous recombination-deficient prostate cancer. Expert Opin Emerg Drugs. 2018;23(2):123–33.

Article  PubMed  PubMed Central  Google Scholar 

Robinson D, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):1215–28.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hussain M, et al. Survival with olaparib in metastatic castration-resistant prostate cancer. N Engl J Med. 2020;383(24):2345–57.

Article  CAS  PubMed  Google Scholar 

Li G-M. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008;18(1):85–98.

Article  CAS  PubMed  Google Scholar 

Sedhom R, Antonarakis ES. Clinical implications of mismatch repair deficiency in prostate cancer. Future Oncol. 2019;15(20):2395–411.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodrigues DN, et al. Immunogenomic analyses associate immunological alterations with mismatch repair defects in prostate cancer. J Clin Investig. 2018;128(10):4441–53.

Article  Google Scholar 

Kilgour E, et al. Liquid biopsy-based biomarkers of treatment response and resistance. Cancer Cell. 2020;37(4):485–95.

Article  CAS  PubMed  Google Scholar 

Wang Y, et al. Liquid biopsy in prostate cancer: current status and future challenges of clinical application. Aging Male. 2021;24(1):58–71.

Article  CAS  PubMed  Google Scholar 

Hashimoto K, et al. Serum testosterone level is a useful biomarker for determining the optimal treatment for castration-resistant prostate cancer. In Urologic Oncology: Seminars and Original Investigations. Elsevier; 2019.

Shiota M, et al. Serum testosterone level as possible predictive marker in androgen receptor axis-targeting agents and taxane chemotherapies for castration-resistant prostate cancer. In Urologic Oncology: Seminars and Original Investigations. Elsevier; 2019.

Conteduca V, et al. SLFN11 expression in advanced prostate cancer and response to platinum-based chemotherapySLFN11 expression in prostate cancer. Mol Cancer Ther. 2020;19(5):1157–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sonpavde G, et al. Serum alkaline phosphatase changes predict survival independent of PSA changes in men with castration-resistant prostate cancer and bone metastasis receiving chemotherapy. Urol Oncol. 2010;30:607–13.

Article  PubMed  Google Scholar 

Murata H, et al. Baseline neutrophil-to-lymphocyte ratio predicts the prognosis of castration-resistant prostate cancer treated with abiraterone acetate. Mol Clin Oncol. 2018;8(4):587–91.

PubMed  Google Scholar 

Kumano Y, et al. Pretreatment neutrophil to lymphocyte ratio (NLR) predicts prognosis for castration resistant prostate cancer patients underwent enzalutamide. Biomed Res Int. 2019;2019:9450838.

Article  PubMed  PubMed Central  Google Scholar 

Mungenast F, et al. Next-generation digital histopathology of the tumor microenvironment. Genes. 2021;12(4):538.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ness N, et al. The prognostic role of immune checkpoint markers programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) in a large, multicenter prostate cancer cohort. Oncotarget. 2017;8(16):26789.

Article  PubMed  PubMed Central  Google Scholar 

Moradi A, et al. Beyond the biomarker role: Prostate-specific antigen (PSA) in the prostate cancer microenvironment. Cancer Metastasis Rev. 2019;38(3):333–46.

Article  CAS  PubMed  Google Scholar 

Balk SP, Ko Y-J, Bubley GJ. Biology of prostate-specific antigen. J Clin Oncol. 2003;21(2):383–91.

Article  CAS  PubMed  Google Scholar 

McNally CJ, et al. Biomarkers that differentiate benign prostatic hyperplasia from prostate cancer: a literature review. Cancer Manag Res. 2020;12:5225.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei L, et al. Intratumoral and intertumoral genomic heterogeneity of multifocal localized prostate cancer impacts molecular classifications and genomic prognosticators. Eur Urol. 2017;71(2):183–92.

Article  CAS  PubMed  Google Scholar 

Allemailem KS, et al. Single nucleotide polymorphisms (SNPs) in prostate cancer: its implications in diagnostics and therapeutics. Am J Transl Res. 2021;13(4):3868.

CAS  PubMed  PubMed Central  Google Scholar 

•• Conti DV, et al. Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nat Genet. 2021;53(1):65–75. This article provides a comprehensive genome wide association study of PCa, introducing 86 new genetic risk variants. These finding along with genetic risk score (GRS) is suggested an approach for personalized risk prediction.

Article 

留言 (0)

沒有登入
gif