TSANet: multibranch attention deep neural network for classifying tactile selective attention in brain-computer interfaces

Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH, Schalk G, et al. Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng. 2000;8:164–73.

Article  Google Scholar 

Roy Y, Banville H, Albuquerque I, Gramfort A, Falk TH, Faubert J. Deep learning-based electroencephalography analysis: a systematic review. J Neural Eng. 2019;16:051001.

Article  Google Scholar 

Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X. A comprehensive review of EEG-based brain-computer interface paradigms. J Neural Eng. 2019;16:011001. https://doi.org/10.1088/1741-2552/aaf12e.

Article  Google Scholar 

Gramfort A, Strohmeier D, Haueisen J, Hämäläinen MS, Kowalski M. Time-frequency mixed-norm estimates: sparse M/EEG imaging with non-stationary source activations. Neuroimage. 2013;70:410–22.

Article  Google Scholar 

Nicolas-Alonso LF, Gomez-Gil J. Brain computer interfaces, a review. Sensors. 2012;12:1211–79.

Article  Google Scholar 

Murguialday AR, Aggarwal V, Chatterjee A, Cho Y, Rasmussen R, O’Rourke B, et al. Brain-computer interface for a prosthetic hand using local machine control and haptic feedback. In: IEEE 10th international conference on rehabilitation robotics. 2007, pp. 609–13.

McFarland DJ, Sarnacki WA, Wolpaw JR. Electroencephalographic (EEG) control of three-dimensional movement. J Neural Eng. 2010. https://doi.org/10.1088/1741-2560/7/3/036007.

Article  Google Scholar 

Sun A, Fan B, Jia C. Motor imagery EEG-based online control system for upper artificial limb. In: International conference on transportation, mechanical, and electrical engineering. 2011, pp. 1646–9.

Bhattacharyya S, Khasnobish A, Konar A, Tibarewala DN, Nagar AK. Performance analysis of left/right hand movement classification from EEG signal by intelligent algorithms. In: IEEE symposium on computational intelligence, cognitive algorithms, mind, and brain. 2011, 1–8.

Cipresso P, Carelli L, Solca F, Meazzi D, Meriggi P, Poletti B, et al. The use of P300-based BCIs in amyotrophic lateral sclerosis: from augmentative and alternative communication to cognitive assessment. Brain Behav. 2012;2:479–98.

Article  Google Scholar 

Krusienski DJ, Sellers EW, Cabestaing F, Bayoudh S, McFarland DJ, Vaughan TM, et al. A comparison of classification techniques for the P300 Speller. J Neural Eng. 2006. https://doi.org/10.1088/1741-2560/3/4/007.

Article  Google Scholar 

Hoffmann U, Vesin JM, Ebrahimi T, Diserens K. An efficient P300-based brain-computer interface for disabled subjects. J Neurosci Methods. 2008;167:115–25.

Article  Google Scholar 

Bell CJ, Shenoy P, Chalodhorn R, Rao RPN. Control of a humanoid robot by a noninvasive brain-computer interface in humans. J Neural Eng. 2008;5:214–20.

Article  Google Scholar 

Bryan M, Green J, Chung M, Chang L, Scherer R, Smith J, et al. An adaptive brain-computer interface for humanoid robot control. In: IEEE-RAS international conference on humanoid robots. 2011, pp. 199–204.

Gembler F, Stawicki P, Volosyak I. Autonomous parameter adjustment for SSVEP-based BCIs with a novel BCI wizard. Front Neurosci. 2015;9:1–12.

Article  Google Scholar 

Blankertz B, Sannelli C, Halder S, Hammer EM, Kübler A, Müller KR, et al. Neurophysiological predictor of SMR-based BCI performance. Neuroimage. 2010;51:1303–9.

Article  Google Scholar 

Volosyak I, Valbuena D, Lüth T, Malechka T, Gräser A. BCI demographics II: How many (and what kinds of) people can use a high-frequency SSVEP BCI? IEEE Trans Neural Syst Rehabil Eng. 2011;19:232–9.

Article  Google Scholar 

Müller-Putz GR, Scherer R, Neuper C, Pfurtscheller G. Steady-state somatosensory evoked potentials: Suitable brain signals for brain-computer interfaces? IEEE Trans Neural Syst Rehabil Eng. 2006;14:30–7.

Article  Google Scholar 

Yao L, Meng J, Zhang D, Sheng X, Zhu X. Selective sensation based brain-computer interface via mechanical vibrotactile stimulation. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0064784.

Article  Google Scholar 

Yao L, Meng J, Zhang D, Sheng X, Zhu X. Combining motor imagery with selective sensation toward a hybrid-modality BCI. IEEE Trans Biomed Eng. 2014;61:2304–12.

Article  Google Scholar 

Ahn S, Ahn M, Cho H, Chan JS. Achieving a hybrid brain-computer interface with tactile selective attention and motor imagery. J Neural Eng. 2014. https://doi.org/10.1088/1741-2560/11/6/066004.

Article  Google Scholar 

Ahn S, Kim K, Jun SC. Steady-state somatosensory evoked potential for brain-computer interface-present and future. Front Hum Neurosci. 2016;9:1–6.

Article  Google Scholar 

Craik A, He Y, Contreras-Vidal JL. Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng. 2019;16:031001.

Article  Google Scholar 

Schirrmeister RT, Springenberg JT, Fiederer LDJ, Glasstetter M, Eggensperger K, Tangermann M, et al. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp. 2017;38:5391–420.

Article  Google Scholar 

Gao Z, Sun X, Liu M, Dang W, Ma C, Chen G. Attention-based Parallel Multiscale Convolutional Neural Network for Visual Evoked Potentials EEG Classification. IEEE J Biomed Health Inform. 2021;2194:1–8.

Google Scholar 

Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ. EEGNet: A compact convolutional neural network for EEG-based brain-computer interfaces. J Neural Eng. 2018;15: 056013.

Article  Google Scholar 

Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med. 2018;100:270–8.

Article  Google Scholar 

Sors A, Bonnet S, Mirek S, Vercueil L, Payen JF. A convolutional neural network for sleep stage scoring from raw single-channel EEG. Biomed Signal Process Control. 2018;42:107–14.

Article  Google Scholar 

Ingolfsson TM, Hersche M, Wang X, Kobayashi N, Cavigelli L, Benini L. EEG-TCNet: an accurate temporal convolutional network for embedded motor-imagery brain-machine interfaces. In: 2020 IEEE international conference on systems, man, and cybernetics (SMC). 2020, pp. 2958–65.

Zhang D, Yao L, Zhang X, Wang S, Chen W, Boots R. Cascade and parallel convolutional recurrent neural networks on EEG-based intention recognition for brain computer interface. In: 32nd AAAI conference on artificial intelligence. 2018, pp. 1703–10.

Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21.

Article  Google Scholar 

Urigüen JA, Garcia-Zapirain B. EEG artifact removal—state-of-the-art and guidelines. J Neural Eng. 2015. https://doi.org/10.1088/1741-2560/12/3/031001.

Article  Google Scholar 

Supratak A, Dong H, Wu C, Guo Y. DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Trans Neural Syst Rehabil Eng. 2017;25:1998–2008.

Article  Google Scholar 

Zhang R, Zong Q, Zhao X. A multi-branch 3D convolutional neural network for EEG-based motor imagery classification. In: Chinese control conference. 2019, pp. 8428–32.

Zhang Y, Cai H, Nie L, Xu P, Zhao S, Guan C. An end-to-end 3D convolutional neural network for decoding attentive mental state. Neural Netw. 2021;144:129–37.

Article  Google Scholar 

Chollet F. Xception: deep learning with depthwise separable convolutions. In: Proceedings - 30th IEEE conference on computer vision and pattern recognition. 2017, pp. 1800–7.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. In: Advances in neural information processing systems. Neural information processing systems foundation; 2017. pp. 5999–6009.

Qu W, Wang Z, Hong H, Chi Z, Feng DD, Grunstein R, et al. A residual based attention model for EEG based sleep staging. IEEE J Biomed Health Inform. 2020;24:2833–43.

Article  Google Scholar 

Yao Q, Wang R, Fan X, Liu J, Li Y. Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network. Inf Fusion. 2020;53:174–82.

Article  Google Scholar 

Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M. Striving for simplicity: the all convolutional net. In: 3rd International conference on learning representations. 2015, pp. 1–14.

Zhang D, Yao L, Zhang X, Wang S, Chen W. Boots Cascade and Parallel Convolutional Recurrent Neural Networks on EEG-Based Intention Recognition for Brain Computer Interface. Thirty-Second AAAI Conference on Artificial Intelligence. 2017;32:1703–10.

Google Scholar 

Aggarwal S, Chugh N. Review of machine learning techniques for EEG based brain computer interface. Arch Comput Methods Eng. 2022;29:3001–20.

Article  Google Scholar 

Yao L, Jiang N, Mrachacz-Kersting N, Zhu X, Farina D, Wang Y. Reducing the calibration time in somatosensory BCI by using tactile ERD. IEEE Trans Neural Syst Rehabil Eng. 2022;30:1870–6.

Article  Google Scholar 

Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, et al. A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J Neural Eng. 2018. https://doi.org/10.1088/1741-2552/aab2f2.

Article  Google Scholar 

留言 (0)

沒有登入
gif