Translational physiologically-based pharmacokinetic model for ocular disposition of monoclonal antibodies

Wong WL et al (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2(2):e106–e116

Article  PubMed  Google Scholar 

Flaxman SR et al (2017) Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health 5(12):e1221–e1234

Article  PubMed  Google Scholar 

Mullard A (2021) FDA approves 100th monoclonal antibody product. Nat Rev Drug Discov 20:491–495. https://doi.org/10.1038/d41573-021-00079-7

Article  CAS  PubMed  Google Scholar 

Kroschinsky F et al (2017) New drugs, new toxicities: severe side effects of modern targeted and immunotherapy of cancer and their management. Critical care (London, England) 21(1):89–89

Article  PubMed  Google Scholar 

Perez VL et al (2013) The eye: a window to the soul of the immune system. J Autoimmun 45:7–14

Article  CAS  PubMed  Google Scholar 

Eaton JS et al (2015) Ocular adverse events associated with antibody-drug conjugates in human clinical trials. J Ocul Pharmacol Ther 31(10):589–604

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ho WL, Wong H, Yau T (2013) The ophthalmological complications of targeted agents in cancer therapy: what do we need to know as ophthalmologists? Acta Ophthalmol 91(7):604–609

Article  PubMed  Google Scholar 

Vishnevskia-Dai V et al (2021) Ocular side effects of novel anti-cancer biological therapies. Sci Rep 11(1):787

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zernii EY et al (2016) Rabbit models of ocular diseases: new relevance for classical approaches. CNS Neurol Disord Drug Targets 15(3):267–291

Article  CAS  PubMed  Google Scholar 

Picaud S et al (2019) The primate model for understanding and restoring vision. Proc Natl Acad Sci 116(52):26280

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fernandes A et al (2003) Ocular measurements throughout the adult life span of rhesus monkeys. Invest Ophthalmol Vis Sci 44(6):2373–2380

Article  PubMed  Google Scholar 

Chang B (2013) Mouse models for studies of retinal degeneration and diseases. Methods Mol Biol 935:27–39

Article  CAS  PubMed  Google Scholar 

Hutton-Smith LA et al (2016) A mechanistic model of the intravitreal pharmacokinetics of large molecules and the pharmacodynamic suppression of ocular vascular endothelial growth factor levels by ranibizumab in patients with neovascular age-related macular degeneration. Mol Pharm 13(9):2941–2950

Article  CAS  PubMed  Google Scholar 

Hutton-Smith LA et al (2017) Ocular pharmacokinetics of therapeutic antibodies given by intravitreal injection: estimation of retinal permeabilities using a 3-compartment semi-mechanistic model. Mol Pharm 14(8):2690–2696

Article  CAS  PubMed  Google Scholar 

Park SJ et al (2016) Intraocular pharmacokinetics of intravitreal aflibercept (eylea) in a rabbit model. Invest Ophthalmol Vis Sci 57(6):2612–2617

Article  CAS  PubMed  Google Scholar 

Mordenti J et al (1999) Comparisons of the intraocular tissue distribution, pharmacokinetics, and safety of 125I-labeled full-length and Fab antibodies in rhesus monkeys following intravitreal administration. Toxicol Pathol 27(5):536–544

Article  CAS  PubMed  Google Scholar 

Shah DK, Betts AM (2012) Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn 39(1):67–86

Article  CAS  PubMed  Google Scholar 

Bussing D, Dhaval KS (2020) Development of a physiologically-based pharmacokinetic model for ocular disposition of monoclonal antibodies in rabbits. J Pharmacokinet Pharmacodyn 47(6):597–612

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rohatgi, A., Webplotdigitizer: Version 4.5.

Hinton PR et al (2004) Engineered human IgG antibodies with longer serum half-lives in primates. J Biol Chem 279(8):6213–6216

Article  CAS  PubMed  Google Scholar 

Lin YS et al (1999) Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of a humanized monoclonal antibody against vascular endothelial growth factor. J Pharmacol Exp Ther 288(1):371–378

CAS  PubMed  Google Scholar 

Miyake T et al (2010) Pharmacokinetics of bevacizumab and its effect on vascular endothelial growth factor after intravitreal injection of bevacizumab in macaque eyes. Invest Ophthalmol Vis Sci 51(3):1606–1608

Article  PubMed  Google Scholar 

Yu DA et al (2018) Preclinical pharmacokinetics of a recombinant humanized rabbit anti-VEGF monoclonal antibody in rabbits and monkeys. Toxicol Lett 292:73–77

Article  CAS  PubMed  Google Scholar 

Curtin F et al (2016) Serum pharmacokinetics and cerebrospinal fluid concentration analysis of the new IgG4 monoclonal antibody GNbAC1 to treat multiple sclerosis: a phase 1 study. MAbs 8(5):854–860

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weisman MH et al (2003) Efficacy, pharmacokinetic, and safety assessment of adalimumab, a fully human anti-tumor necrosis factor-alpha monoclonal antibody, in adults with rheumatoid arthritis receiving concomitant methotrexate: a pilot study. Clin Ther 25(6):1700–1721

Article  CAS  PubMed  Google Scholar 

Markus R et al (2017) A phase I, randomized, single-dose study evaluating the pharmacokinetic equivalence of biosimilar ABP 215 and bevacizumab in healthy adult men. Cancer Chemother Pharmacol 80(4):755–763

Article  CAS  PubMed  PubMed Central  Google Scholar 

Knight B et al (2016) A phase I pharmacokinetics study comparing PF-06439535 (a potential biosimilar) with bevacizumab in healthy male volunteers. Cancer Chemother Pharmacol 77(4):839–846

Article  CAS  PubMed  PubMed Central  Google Scholar 

Avery RL et al (2017) Systemic pharmacokinetics and pharmacodynamics of intravitreal aflibercept, bevacizumab and ranibizumab. Retina 37(10):1847–1858

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krohne TU et al (2008) Intraocular pharmacokinetics of bevacizumab after a single intravitreal injection in humans. Am J Ophthalmol 146(4):508–512

Article  CAS  PubMed  Google Scholar 

Meyer CH, Krohne TU, Holz FG (2011) Intraocular pharmacokinetics after a single intravitreal injection of 1.5 mg versus 3.0 mg of bevacizumab in humans. Retina 31(9):1877–1884

Article  CAS  PubMed  Google Scholar 

Zhu Q et al (2008) Vitreous levels of bevacizumab and vascular endothelial growth factor-A in patients with choroidal neovascularization. Ophthalmology 115(10):1750–1755

Article  PubMed  Google Scholar 

D’Argenio DZ, Schumitzky A, Wang X (2009) ADAPT 5 User’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Biomedical Simulations Resource, Los Angeles

Google Scholar 

Smith DW, Lee CJ, Gardiner BS (2020) No flow through the vitreous humor: How strong is the evidence? Prog Retin Eye Res 78:100845

Article  CAS  Google Scholar 

Chang HY et al (2019) A translational platform PBPK model for antibody disposition in the brain. J Pharmacokinet Pharmacodyn 46(4):319–338

Article  CAS  PubMed  PubMed Central  Google Scholar 

Missel PJ (2012) Simulating intravitreal injections in anatomically accurate models for rabbit, monkey, and human eyes. Pharm Res 29(12):3251–3272

Article  CAS  PubMed  PubMed Central  Google Scholar 

Short BG (2008) Safety evaluation of ocular drug delivery formulations: techniques and practical considerations. Toxicol Pathol 36(1):49–62

Article  CAS  PubMed  Google Scholar 

Vézina M (2013) Comparative ocular anatomy in commonly used laboratory animals. In: Weir AB, Collins M (eds) Assessing ocular toxicology in laboratory animals. Humana Press, Totowa, NJ, pp 1–21

Google Scholar 

Rowe-Rendleman CL et al (2014) Drug and gene delivery to the back of the eye: from bench to bedside. Invest Ophthalmol Vis Sci 55(4):2714–2730

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cauvin AJ, Peters C, Brennan F (2015) Advantages and limitations of commonly used nonhuman primate species in research and development of biopharmaceuticals. The nonhuman primate in nonclinical drug development and safety assessment. Elsevier, Amsterdam, pp 379–395

留言 (0)

沒有登入
gif