Identifying oxidative stress-related biomarkers in idiopathic pulmonary fibrosis in the context of predictive, preventive, and personalized medicine using integrative omics approaches and machine-learning strategies

Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Inoue Y, Johkoh T, et al. Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med. 2022;205:e18–47. https://doi.org/10.1164/rccm.202202-0399ST.

Article  PubMed  PubMed Central  Google Scholar 

Glass DS, Grossfeld D, Renna HA, Agarwala P, Spiegler P, DeLeon J, et al. Idiopathic pulmonary fibrosis: Current and future treatment. Clin Respir J. 2022;16:84–96. https://doi.org/10.1111/crj.13466.

Article  PubMed  PubMed Central  Google Scholar 

Kašiković Lečić S, Javorac J, Živanović D, Lovrenski A, Tegeltija D, Zvekić Svorcan J, et al. Management of musculoskeletal pain in patients with idiopathic pulmonary fibrosis: a review. Ups J Med Sci. 2022;127. https://doi.org/10.48101/ujms.v127.8739.

Huang Y, Li C, Shi D, Wang H, Shang X, Wang W, et al. Integrating oculomics with genomics reveals imaging biomarkers for preventive and personalized prediction of arterial aneurysms. EPMA J. 2023;14:73–86. https://doi.org/10.1007/s13167-023-00315-7.

Article  PubMed  PubMed Central  Google Scholar 

Kropp M, Golubnitschaja O, Mazurakova A, Koklesova L, Sargheini N, Vo T-TKS, et al. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications-risks and mitigation. EPMA J. 2023;14:21–42. https://doi.org/10.1007/s13167-023-00314-8.

Article  PubMed  PubMed Central  Google Scholar 

Zhang G, Wang Z, Song P, Zhan X. DNA and histone modifications as potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine. EPMA J. 2022;13:649–69. https://doi.org/10.1007/s13167-022-00300-6.

Article  PubMed  Google Scholar 

Yang F, Ma Z, Li W, Kong J, Zong Y, Wendusu B, et al. Identification and immune characteristics of molecular subtypes related to fatty acid metabolism in idiopathic pulmonary fibrosis. Front Nutr. 2022;9:992331. https://doi.org/10.3389/fnut.2022.992331.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kreuter M, Polke M, Walsh SLF, Krisam J, Collard HR, Chaudhuri N, et al. Acute exacerbation of idiopathic pulmonary fibrosis: international survey and call for harmonisation. Eur Respir J. 2020;55:1901760. https://doi.org/10.1183/13993003.01760-2019.

Article  PubMed  Google Scholar 

Abramson MJ, Walters EH. Mapping air pollution and idiopathic pulmonary fibrosis. Respirology. 2021;26:292–3. https://doi.org/10.1111/resp.14004.

Article  PubMed  Google Scholar 

Abramson MJ, Murambadoro T, Alif SM, Benke GP, Dharmage SC, Glaspole I, et al. Occupational and environmental risk factors for idiopathic pulmonary fibrosis in Australia: case-control study. Thorax. 2020;75:864–9. https://doi.org/10.1136/thoraxjnl-2019-214478.

Article  PubMed  Google Scholar 

Kishaba T. Evaluation and management of Idiopathic Pulmonary Fibrosis. Respir Investig. 2019;57:300–11. https://doi.org/10.1016/j.resinv.2019.02.003.

Article  PubMed  Google Scholar 

Roksandic Milenkovic M, Klisic A, Ceriman V, Kotur Stevuljevic J, Savic Vujovic K, Mirkov D, et al. Oxidative stress and inflammation parameters-novel biomarkers for idiopathic pulmonary fibrosis. Eur Rev Med Pharmacol Sci. 2022;26:927–34. https://doi.org/10.26355/eurrev_202202_28002.

Article  CAS  PubMed  Google Scholar 

Hosseinzadeh A, Javad-Moosavi SA, Reiter RJ, Yarahmadi R, Ghaznavi H, Mehrzadi S. Oxidative/nitrosative stress, autophagy and apoptosis as therapeutic targets of melatonin in idiopathic pulmonary fibrosis. Expert Opin Ther Targets. 2018;22:1049–61. https://doi.org/10.1080/14728222.2018.1541318.

Article  CAS  PubMed  Google Scholar 

Cheresh P, Kim S-J, Jablonski R, Watanabe S, Lu Z, Chi M, et al. SIRT3 Overexpression Ameliorates Asbestos-Induced Pulmonary Fibrosis, mt-DNA Damage, and Lung Fibrogenic Monocyte Recruitment. Int J Mol Sci. 2021;22:6856. https://doi.org/10.3390/ijms22136856.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Podolanczuk AJ, Noth I, Raghu G. Idiopathic pulmonary fibrosis: prime time for a precision-based approach to treatment with -acetylcysteine. Eur Respir J. 2021;57:2003551. https://doi.org/10.1183/13993003.03551-2020.

Article  CAS  PubMed  Google Scholar 

Estornut C, Milara J, Bayarri MA, Belhadj N, Cortijo J. Targeting Oxidative Stress as a Therapeutic Approach for Idiopathic Pulmonary Fibrosis. Front Pharmacol. 2022;12:35. https://doi.org/10.3389/fphar.2021.794997.

Article  CAS  Google Scholar 

Ruwanpura SM, Thomas BJ, Bardin PG. Pirfenidone: Molecular Mechanisms and Potential Clinical Applications in Lung Disease. Am J Respir Cell Mol Biol. 2020;62:413–22. https://doi.org/10.1165/rcmb.2019-0328TR.

Article  CAS  PubMed  Google Scholar 

Han XD, Yuan T, Zhang JL, Shi YG, Li DG, Dong YP, et al. FOXO4 peptide targets myofibroblast ameliorates bleomycin-induced pulmonary fibrosis in mice through ECM-receptor interaction pathway. J Cell Mol Med. 2022;26:3269–80. https://doi.org/10.1111/jcmm.17333.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calverley P, Rogliani P, Papi A. Safety of N-Acetylcysteine at High Doses in Chronic Respiratory Diseases: A Review. Drug Saf. 2021;44:273–90. https://doi.org/10.1007/s40264-020-01026-y.

Article  CAS  PubMed  Google Scholar 

Zhou B, Buckley ST, Patel V, Liu Y, Luo J, Krishnaveni MS, et al. Troglitazone attenuates TGF-β1-induced EMT in alveolar epithelial cells via a PPARγ-independent mechanism. PLoS One. 2012;7:e38827. https://doi.org/10.1371/journal.pone.0038827.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang IV, Coldren CD, Leach SM, Seibold MA, Murphy E, Lin J, et al. Expression of cilium-associated genes defines novel molecular subtypes of idiopathic pulmonary fibrosis. Thorax. 2013;68:1114–21. https://doi.org/10.1136/thoraxjnl-2012-202943.

Article  PubMed  Google Scholar 

DePianto DJ, Chandriani S, Abbas AR, Jia GQ, N'Diaye EN, Caplazi P, et al. Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis. Thorax. 2015;70:48–56. https://doi.org/10.1136/thoraxjnl-2013-204596.

Article  PubMed  Google Scholar 

Konishi K, Gibson KF, Lindell KO, Richards TJ, Zhang YZ, Dhir R, et al. Gene Expression Profiles of Acute Exacerbations of Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med. 2009;180:167–75. https://doi.org/10.1164/rccm.200810-1596OC.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Molyneaux PL, Willis-Owen SAG, Cox MJ, James P, Cowman S, Loebinger M, et al. Host-Microbial Interactions in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med. 2017;195:1640–50. https://doi.org/10.1164/rccm.201607-1408OC.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ritchie ME, Phipson B, Wu D, Hu YF, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:13. https://doi.org/10.1093/nar/gkv007.

Article  CAS  Google Scholar 

Saul D, Kosinsky RL, Atkinson EJ, Doolittle ML, Zhang X, LeBrasseur NK, et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat Commun. 2022;13:15. https://doi.org/10.1038/s41467-022-32552-1.

Article  CAS  Google Scholar 

Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:13. https://doi.org/10.1186/1471-2105-9-559.

Article  CAS  Google Scholar 

Langfelder P, Horvath S. Fast R Functions for Robust Correlations and Hierarchical Clustering. J Stat Softw. 2012;46:1–17.

Article  Google Scholar 

Ginestet C. ggplot2: Elegant Graphics for Data Analysis. J R Stat Soc Ser A-Stat Soc. 2011;174:245. https://doi.org/10.1111/j.1467-985X.2010.00676_9.x.

Article  Google Scholar 

Gu ZG, Gu L, Eils R, Schlesner M, Brors B. circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30:2811–2. https://doi.org/10.1093/bioinformatics/btu393.

Article  CAS  PubMed  Google Scholar 

Luo WJ, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics. 2013;29:1830–1. https://doi.org/10.1093/bioinformatics/btt285.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics. 2010;26:1572–3. https://doi.org/10.1093/bioinformatics/btq170.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie NN, Wang FF, Zhou J, Liu C, Qu F. Establishment and Analysis of a Combined Diagnostic Model of Polycystic Ovary Syndrome with Random Forest and Artificial Neural Network. Biomed Res Int. 2020;2020:2613091. https://doi.org/10.1155/2020/2613091.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan X, Jin X, Wang J, Hu Q, Dai B. Placenta inflammation is closely associated with gestational diabetes mellitus. Am J Transl Res. 2021;13:4068–79.

CAS  PubMed  PubMed Central  Google Scholar 

Newman AM, Liu CL, Green MR, Gentles AJ, Feng WG, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453. https://doi.org/10.1038/nmeth.3337.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313:1929–35. https://doi.org/10.1126/science.1132939.

Article  CAS 

留言 (0)

沒有登入
gif