Single nucleotide polymorphisms associated with wine fermentation and adaptation to nitrogen limitation in wild and domesticated yeast strains

Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, et al. Life with 6000 genes. Science. 1996;274(5287):546. 63 – 7.

Article  CAS  PubMed  Google Scholar 

Bisson LF. The biotechnology of wine yeast. Food Biotechnol. 2007;18(1):63–96.

Article  Google Scholar 

Giaever G, Nislow C. The yeast deletion collection: a decade of functional genomics. Genetics. 2014;197(2):451–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jensen MK, Keasling JD. Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS Yeast Res. 2014.

Kim H, Yoo SJ, Kang HA. Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res. 2014.

Mokdad-Gargouri R, Abdelmoula-Soussi S, Hadiji-Abbes N, Amor IY, Borchani-Chabchoub I, Gargouri A. Yeasts as a tool for heterologous gene expression. Methods Mol Biol. 2012;824:359–70.

Article  CAS  PubMed  Google Scholar 

Borneman AR, Pretorius IS. Genomic insights into the Saccharomyces sensu stricto complex. Genetics. 2015;199(2):281–91.

Article  PubMed  PubMed Central  Google Scholar 

Liti G. The fascinating and secret wild life of the budding yeast S. cerevisiae. Elife. 2015;4.

Fay JC, Benavides JA. Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet. 2005;1(1):66–71.

Article  CAS  PubMed  Google Scholar 

Martinez C, Cosgaya P, Vasquez C, Gac S, Ganga A. High degree of correlation between molecular polymorphism and geographic origin of wine yeast strains. J Appl Microbiol. 2007;103(6):2185–95.

Article  CAS  PubMed  Google Scholar 

Martinez C, Gac S, Lavin A, Ganga M. Genomic characterization of Saccharomyces cerevisiae strains isolated from wine-producing areas in South America. J Appl Microbiol. 2004;96(5):1161–8.

Article  CAS  PubMed  Google Scholar 

Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, et al. Population genomics of domestic and wild yeasts. Nature. 2009;458(7236):337–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schacherer J, Shapiro JA, Ruderfer DM, Kruglyak L. Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature. 2009;458(7236):342–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strope PK, Skelly DA, Kozmin SG, Mahadevan G, Stone EA, Magwene PM, et al. The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. Genome Res. 2015;25(5):762–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bergstrom A, Simpson JT, Salinas F, Barre B, Parts L, Zia A, et al. A high-definition view of functional genetic variation from natural yeast genomes. Mol Biol Evol. 2014;31(4):872–88.

Article  PubMed  PubMed Central  Google Scholar 

Peter J, De Chiara M, Friedrich A, Yue JX, Pflieger D, Bergstrom A, et al. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature. 2018;556(7701):339–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ambroset C, Petit M, Brion C, Sanchez I, Delobel P, Guerin C, et al. Deciphering the molecular basis of wine yeast fermentation traits using a combined genetic and genomic approach. (Bethesda). 2011;G3(4):263–81.

Article  Google Scholar 

Cubillos FA, Brice C, Molinet J, Tisne S, Abarca V, Tapia SM et al. Identification of Nitrogen Consumption genetic variants in yeast through QTL mapping and bulk segregant RNA-Seq analyses. G3 (Bethesda). 2017;7(6):1693–705.

Eder M, Sanchez I, Brice C, Camarasa C, Legras JL, Dequin S. QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation. BMC Genomics. 2018;19(1):166.

Article  PubMed  PubMed Central  Google Scholar 

Ehrenreich IM, Bloom J, Torabi N, Wang X, Jia Y, Kruglyak L. Genetic architecture of highly complex chemical resistance traits across four yeast strains. PLoS Genet. 2012;8(3):e1002570.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gutierrez A, Beltran G, Warringer J, Guillamon JM. Genetic basis of variations in nitrogen source utilization in four wine commercial yeast strains. PLoS ONE. 2013;8(6):e67166.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jara M, Cubillos FA, Garcia V, Salinas F, Aguilera O, Liti G, et al. Mapping genetic variants underlying differences in the central nitrogen metabolism in fermenter yeasts. PLoS ONE. 2014;9(1):e86533.

Article  PubMed  PubMed Central  Google Scholar 

Kessi-Perez EI, Araos S, Garcia V, Salinas F, Abarca V, Larrondo LF et al. RIM15 antagonistic pleiotropy is responsible for differences in fermentation and stress response kinetics in budding yeast. FEMS Yeast Res. 2016;16(3).

Kessi-Perez EI, Salinas F, Gonzalez A, Su Y, Guillamon JM, Hall MN, et al. KAE1 allelic variants affect TORC1 activation and fermentation kinetics in Saccharomyces cerevisiae. Front Microbiol. 2019;10:1686.

Article  PubMed  PubMed Central  Google Scholar 

Salinas F, Cubillos FA, Soto D, Garcia V, Bergstrom A, Warringer J, et al. The genetic basis of natural variation in oenological traits in Saccharomyces cerevisiae. PLoS ONE. 2012;7(11):e49640.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sinha H, Nicholson BP, Steinmetz LM, McCusker JH. Complex genetic interactions in a quantitative trait locus. PLoS Genet. 2006;2(2):e13.

Article  PubMed  PubMed Central  Google Scholar 

Steyer D, Ambroset C, Brion C, Claudel P, Delobel P, Sanchez I, et al. QTL mapping of the production of wine aroma compounds by yeast. BMC Genomics. 2012;13:573.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Torabi N, Kruglyak L. Genetic basis of hidden phenotypic variation revealed by increased translational readthrough in yeast. PLoS Genet. 2012;8(3):e1002546.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trindade de Carvalho B, Holt S, Souffriau B, Lopes Brandao R, Foulquie-Moreno MR, Thevelein JM. Identification of novel alleles conferring Superior production of Rose Flavor Phenylethyl acetate using polygenic analysis in yeast. MBio. 2017;8(6).

Kessi-Perez EI, Ponce B, Li J, Molinet J, Baeza C, Figueroa D, et al. Differential Gene expression and allele frequency changes Favour Adaptation of a heterogeneous yeast Population to Nitrogen-Limited fermentations. Front Microbiol. 2020;11:1204.

Article  PubMed  PubMed Central  Google Scholar 

Dequin S, Casaregola S. The genomes of fermentative Saccharomyces. C R Biol. 2011;334(8–9):687–93.

Article  CAS  PubMed  Google Scholar 

Querol A. Adaptive evolution of wine yeast. Int J Food Microbiol. 2003;86(1–2):3–10.

Article  CAS  PubMed  Google Scholar 

Marsit S, Dequin S. Diversity and adaptive evolution of Saccharomyces wine yeast: a review. FEMS Yeast Res. 2015;15(7).

Gobert A, Tourdot-Maréchal R, Sparrow C, Morge C, Alexandre H. Influence of nitrogen status in wine alcoholic fermentation. Food Microbiol. 2019;83:71–85.

Article  CAS  PubMed  Google Scholar 

Pretorius IS. Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast. 2000;16(8):675–729.

Article  CAS  PubMed  Google Scholar 

Bauer FF, Pretorius IS. Yeast stress response and fermentation efficiency: how to survive the making of wine - A review. S Afr J Enol Vitic. 2000;21(1):25.

Google Scholar 

Varela C, Pizarro F, Agosin E. Biomass content governs fermentation rate in nitrogen-deficient wine musts. Appl Environ Microbiol. 2004;70(6):3392–400.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kessi-Perez EI, Molinet J, Martinez C. Disentangling the genetic bases of Saccharomyces cerevisiae nitrogen consumption and adaptation to low nitrogen environments in wine fermentation. Biol Res. 2020;53(1):2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Chiara M, Barre BP, Persson K, Irizar A, Vischioni C, Khaiwal S, et al. Domestication reprogrammed the budding yeast life cycle. Nat Ecol Evol. 2022;6(4):448–60.

Article  PubMed  Google Scholar 

Antony JS, Hinz JM, Wyrick JJ. Tips, Tricks, and potential pitfalls of CRISPR Genome Editing in Saccharomyces cerevisiae. Front Bioeng Biotechnol. 2022;10:924914.

Article  PubMed  PubMed Central  Google Scholar 

Cubillos FA. Exploiting budding yeast natural variation for industrial processes. Curr Genet. 2016;62(4):745–51.

Article  CAS  PubMed  Google Scholar 

Molinet J, Cubillos FA. Wild yeast for the future: exploring the use of wild strains for wine and Beer Fermentation. Front Genet. 2020;11:589350.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif