A high-throughput screening system for SARS-CoV-2 entry inhibition, syncytia formation and cell toxicity

WHO. World Health Organization. Available online: https://www.who.int/ (accessed on 21 September 2022).

Rosenberg, E. S., Dorabawila, V., Easton, D., Bauer, U. E., Kumar, J., Hoen, R., . . . Zucker, H. A. (2022). Covid-19 Vaccine Effectiveness in New York State. N Engl J Med, 386(2), 116–127. https://doi.org/10.1056/NEJMoa2116063.

Du L, Yang Y, Zhang X. Neutralizing antibodies for the prevention and treatment of COVID-19. Cell Mol Immunol. 2021;18(10):2293–306. https://doi.org/10.1038/s41423-021-00752-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, P., Wang, Y., Lavrijsen, M., Lamers, M. M., de Vries, A. C., Rottier, R. J., . . . Pan, Q. (2022). SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination. Cell Res, 32(3), 322–324. https://doi.org/10.1038/s41422-022-00618-w.

Qian, H. J., Wang, Y., Zhang, M. Q., Xie, Y. C., Wu, Q. Q., Liang, L. Y., . . . Liu, G. Y. (2022). Safety, tolerability, and pharmacokinetics of VV116, an oral nucleoside analog against SARS-CoV-2, in Chinese healthy subjects. Acta Pharmacol Sin, 1–9. https://doi.org/10.1038/s41401-022-00895-6.

Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 Spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020;41(9):1141–9. https://doi.org/10.1038/s41401-020-0485-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23(1):3–20. https://doi.org/10.1038/s41580-021-00418-x.

Article  CAS  PubMed  Google Scholar 

Callaway E, Ledford H. How bad is Omicron? What scientists know so far Nature. 2021;600(7888):197–9. https://doi.org/10.1038/d41586-021-03614-z.

Article  CAS  PubMed  Google Scholar 

Riva, L., Yuan, S., Yin, X., Martin-Sancho, L., Matsunaga, N., Pache, L., . . . Chanda, S. K. (2020). Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, 586(7827), 113–119. https://doi.org/10.1038/s41586-020-2577-1.

Yang, L., Pei, R. J., Li, H., Ma, X. N., Zhou, Y., Zhu, F. H., . . . Zuo, J. P. (2021). Identification of SARS-CoV-2 entry inhibitors among already approved drugs. Acta Pharmacol Sin, 42(8), 1347–1353. https://doi.org/10.1038/s41401-020-00556-6.

David, A. B., Diamant, E., Dor, E., Barnea, A., Natan, N., Levin, L., . . . Torgeman, A. (2021). Identification of SARS-CoV-2 Receptor Binding Inhibitors by In Vitro Screening of Drug Libraries. Molecules, 26(11). https://doi.org/10.3390/molecules26113213.

Case, J. B., Rothlauf, P. W., Chen, R. E., Liu, Z., Zhao, H., Kim, A. S., . . . Whelan, S. P. J. (2020). Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2. Cell Host Microbe, 28(3), 475–485 e475. https://doi.org/10.1016/j.chom.2020.06.021.

Bussani, R., Schneider, E., Zentilin, L., Collesi, C., Ali, H., Braga, L., . . . Giacca, M. (2020). Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology. EBioMedicine, 61, 103104. https://doi.org/10.1016/j.ebiom.2020.103104.

Li, N., Chen, X. L., Li, Q., Zhang, Z. R., Deng, C. L., Zhang, B., . . . Ye, H. Q. (2022). A new screening system for entry inhibitors based on cell-to-cell transmitted syncytia formation mediated by self-propagating hybrid VEEV-SARS-CoV-2 replicon. Emerg Microbes Infect, 11(1), 465–476. https://doi.org/10.1080/22221751.2022.2030198.

Lupitha SS, Darvin P, Chandrasekharan A, et al. A rapid bead-based assay for screening of SARS-CoV-2 neutralizing antibodies. Antib Ther. 2022;5(2):100–10. https://doi.org/10.1093/abt/tbac007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., . . . Wang, X. (2020). Structure of the SARS-CoV-2 Spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5.

Asarnow, D., Wang, B., Lee, W. H., Hu, Y., Huang, C. W., Faust, B., . . . Wang, C. I. (2021). Structural insight into SARS-CoV-2 neutralizing antibodies and modulation of syncytia. Cell, 184(12), 3192–3204 e3116. https://doi.org/10.1016/j.cell.2021.04.033.

Li, Y., Wang, A., Wu, Y., Han, N., & Huang, H. (2021). Impact of the COVID-19 Pandemic on the Mental Health of College Students: A Systematic Review and Meta-Analysis. Front Psychol, 12, 669119. https://doi.org/10.3389/fpsyg.2021.669119.

Moggs JG, Orphanides G. The role of chromatin in molecular mechanisms of toxicity. Toxicol Sci. 2004;80(2):218–24. https://doi.org/10.1093/toxsci/kfh164.

Article  CAS  PubMed  Google Scholar 

Herman GA, O'Brien MP, Forleo-Neto E, Sarkar N, Isa F, Hou P, Chan KC, Bar KJ, Barnabas RV, Barouch DH, Cohen MS, Hurt CB, Burwen DR, Marovich MA, Musser BJ, Davis JD, Turner KC, Mahmood A, Hooper AT, Hamilton JD, Parrino J, Subramaniam D, Baum A, Kyratsous CA, DiCioccio AT, Stahl N, Braunstein N, Yancopoulos GD, Weinreich DM; COVID-19 Phase 3 Prevention Trial Team. Efficacy and safety of a single dose of casirivimab and imdevimab for the prevention of COVID-19 over an 8-month period: a randomised, double-blind, placebo-controlled trial. Lancet Infect Dis. 2022 Oct;22(10):1444–1454. https://doi.org/10.1016/S1473-3099(22)00416-9. Epub 2022 Jul 5. Erratum in: Lancet Infect Dis. 2022 Sep;22(9):e239. PMID: 35803290; PMCID: PMC9255947.

Goswami, R., Russell, V. S., Tu, J. J., Thomas, C., Hughes, P., Kelly, F., . . . Permar, S. R. (2021). Oral Hsp90 inhibitor SNX-5422 attenuates SARS-CoV-2 replication and dampens inflammation in airway cells. iScience, 24(12), 103412. https://doi.org/10.1016/j.isci.2021.103412.

S Sahin , F Calapoğlu, I Ozmen. Didemnins Inhibit COVID-19 Main Protease (Mpro). Biointerface Research in Applied Chemistry 2021, 8204 - 8209.

White, K. M., Rosales, R., Yildiz, S., Kehrer, T., Miorin, L., Moreno, E., . . . Garcia-Sastre, A. (2021). Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science, 371(6532), 926–931. https://doi.org/10.1126/science.abf4058.

Choi, R., Zhou, M., Shek, R., Wilson, J. W., Tillery, L., Craig, J. K., . . . Van Voorhis, W. C. (2021). High-throughput screening of the ReFRAME, Pandemic Box, and COVID Box drug repurposing libraries against SARS-CoV-2 nsp15 endoribonuclease to identify small-molecule inhibitors of viral activity. PLoS One, 16(4), e0250019. https://doi.org/10.1371/journal.pone.0250019.

P.B. Yadav, U.M. Lekhak, S.G. Ghane, M.M. Lekhak. Phytochemicals, antioxidants, estimation of cardiac glycoside (Scillaren A) and detection of major metabolites using LC-MS from Drimia species. South African Journal of Botany 2021, 259–268.

Tam NM, Pham DH, Hiep DM, Tran PT, Quang DT, Ngo ST. Searching and designing potential inhibitors for SARS-CoV-2 Mpro from natural sources using atomistic and deep-learning calculations. RSC Adv. 2021;11(61):38495–504. https://doi.org/10.1039/d1ra06534c.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winnicka K, Bielawski K, Bielawska A, Surazynski A. Antiproliferative activity of derivatives of ouabain, digoxin and proscillaridin A in human MCF-7 and MDA-MB-231 breast cancer cells. Biol Pharm Bull. 2008;31(6):1131–40. https://doi.org/10.1248/bpb.31.1131.

Article  CAS  PubMed  Google Scholar 

Schneider-Poetsch, T., Ju, J., Eyler, D. E., Dang, Y., Bhat, S., Merrick, W. C., . . . Liu, J. O. (2010). Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat Chem Biol, 6(3), 209–217. https://doi.org/10.1038/nchembio.304.

Zhang, Z., Zheng, Y., Niu, Z., Zhang, B., Wang, C., Yao, X., . . . Sun, Q. (2021). SARS-CoV-2 Spike protein dictates syncytium-mediated lymphocyte elimination. Cell Death Differ, 28(9), 2765–2777. https://doi.org/10.1038/s41418-021-00782-3.

留言 (0)

沒有登入
gif