Unlocking the Power of Complement-Dependent Cytotoxicity: Engineering Strategies for the Development of Potent Therapeutic Antibodies for Cancer Treatments

Walport MJ. Complement. N Engl J Med. 2001;344(14):1058–66. https://doi.org/10.1056/NEJM200104053441406.

Article  CAS  PubMed  Google Scholar 

Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol. 2018;18(1):46–61. https://doi.org/10.1038/nri.2017.106.

Article  CAS  PubMed  Google Scholar 

Lu Y, Zhao Q, Liao J-Y, Song E, Xia Q, Pan J, et al. Complement signals determine opposite effects of b cells in chemotherapy-induced immunity. Cell. 2020;180(6):1081-97.e24. https://doi.org/10.1016/j.cell.2020.02.015.

Article  CAS  PubMed  Google Scholar 

Afshar-Kharghan V. The role of the complement system in cancer. J Clin Investig. 2017;127(3):780–9. https://doi.org/10.1172/JCI90962.

Article  PubMed  PubMed Central  Google Scholar 

Kang TH, Jung ST. Boosting therapeutic potency of antibodies by taming Fc domain functions. Exp Mol Med. 2019;51(11):1–9. https://doi.org/10.1038/s12276-019-0345-9.

Article  CAS  PubMed  Google Scholar 

Di Gaetano N, Cittera E, Nota R, Vecchi A, Grieco V, Scanziani E, et al. Complement activation determines the therapeutic activity of rituximab in vivo 1. J Immunol. 2003;171(3):1581–7. https://doi.org/10.4049/jimmunol.171.3.1581.

Article  PubMed  Google Scholar 

Pawluczkowycz AW, Beurskens FJ, Beum PV, Lindorfer MA, van de Winkel JGJ, Parren PWHI, et al. Binding of Submaximal C1q promotes complement-dependent cytotoxicity (CDC) of B cells opsonized with anti-CD20 mAbs ofatumumab (OFA) or rituximab (RTX): considerably higher levels of CDC are induced by OFA than by RTX1. J Immunol. 2009;183(1):749–58. https://doi.org/10.4049/jimmunol.0900632.

Article  CAS  PubMed  Google Scholar 

Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med. 2000;6(4):443–6. https://doi.org/10.1038/74704.

Article  CAS  PubMed  Google Scholar 

Weng WK, Levy R. Expression of complement inhibitors CD46, CD55, and CD59 on tumor cells does not predict clinical outcome after rituximab treatment in follicular non-Hodgkin lymphoma. Blood. 2001;98(5):1352–7. https://doi.org/10.1182/blood.v98.5.1352.

Article  CAS  PubMed  Google Scholar 

Zent CS, Secreto CR, LaPlant BR, Bone ND, Call TG, Shanafelt TD, et al. Direct and complement dependent cytotoxicity in CLL cells from patients with high-risk early–intermediate stage chronic lymphocytic leukemia (CLL) treated with alemtuzumab and rituximab. Leuk Res. 2008;32(12):1849–56. https://doi.org/10.1016/j.leukres.2008.05.014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Weers M, Tai Y-T, van der Veer MS, Bakker JM, Vink T, Jacobs DCH, et al. Daratumumab, a novel therapeutic human cd38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol. 2011;186(3):1840–8. https://doi.org/10.4049/jimmunol.1003032.

Article  CAS  PubMed  Google Scholar 

Freeman CL, Sehn LH. A tale of two antibodies: obinutuzumab versus rituximab. Br J Haematol. 2018;182(1):29–45. https://doi.org/10.1111/bjh.15232.

Article  PubMed  Google Scholar 

Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–97. https://doi.org/10.1038/ni.1923.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee C-H, Romain G, Yan W, Watanabe M, Charab W, Todorova B, et al. IgG Fc domains that bind C1q but not effector Fcγ receptors delineate the importance of complement-mediated effector functions. Nat Immunol. 2017;18(8):889–98. https://doi.org/10.1038/ni.3770.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dunkelberger JR, Song W-C. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20(1):34–50. https://doi.org/10.1038/cr.2009.139.

Article  CAS  PubMed  Google Scholar 

Kaplon H, Chenoweth A, Crescioli S, Reichert JM. Antibodies to watch in 2022. MAbs. 2022;14(1):2014296. https://doi.org/10.1080/19420862.2021.2014296.

Article  PubMed  PubMed Central  Google Scholar 

Idusogie EE, Presta LG, Gazzano-Santoro H, Totpal K, Wong PY, Ultsch M, et al. Mapping of the C1q binding site on rituxan, a chimeric antibody with a human IgG1 Fc. J Immunol. 2000;164(8):4178–84. https://doi.org/10.4049/jimmunol.164.8.4178.

Article  CAS  PubMed  Google Scholar 

Idusogie EE, Wong PY, Presta LG, Gazzano-Santoro H, Totpal K, Ultsch M, et al. Engineered antibodies with increased activity to recruit complement. J Immunol. 2001;166(4):2571–5. https://doi.org/10.4049/jimmunol.166.4.2571.

Article  CAS  PubMed  Google Scholar 

Moore GL, Chen H, Karki S, Lazar GA. Engineered Fc variant antibodies with enhanced ability to recruit complement and mediate effector functions. MAbs. 2010;2(2):181–9. https://doi.org/10.4161/mabs.2.2.11158.

Article  PubMed  PubMed Central  Google Scholar 

Ugurlar D, Howes SC, de Kreuk B-J, Koning RI, de Jong RN, Beurskens FJ, et al. Structures of C1-IgG1 provide insights into how danger pattern recognition activates complement. Science. 2018;359(6377):794–7. https://doi.org/10.1126/science.aao4988.

Article  CAS  PubMed  Google Scholar 

Caaveiro JMM, Kiyoshi M, Tsumoto K. Structural analysis of Fc/FcγR complexes: a blueprint for antibody design. Immunol Rev. 2015;268(1):201–21. https://doi.org/10.1111/imr.12365.

Article  CAS  PubMed  Google Scholar 

Hughes-Jones NC, Gardner B. Reaction between the isolated globular sub-units of the complement component Clq and IgG-complexes. Mol Immunol. 1979;16(9):697–701. https://doi.org/10.1016/0161-5890(79)90010-5.

Article  CAS  PubMed  Google Scholar 

Diebolder CA, Beurskens FJ, de Jong RN, Koning RI, Strumane K, Lindorfer MA, et al. Complement is activated by IgG hexamers assembled at the cell surface. Science. 2014;343(6176):1260–3. https://doi.org/10.1126/science.1248943.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Jong RN, Beurskens FJ, Verploegen S, Strumane K, van Kampen MD, Voorhorst M, et al. A novel platform for the potentiation of therapeutic antibodies based on antigen-dependent formation of IgG hexamers at the cell surface. PLOS Biol. 2016;14(1): e1002344. https://doi.org/10.1371/journal.pbio.1002344.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simone CO, JvdH H, Margaret AL, Erika MC, Jillian CT, Clive SZ, et al. CD20 and CD37 antibodies synergize to activate complement by Fc-mediated clustering. Haematologica. 2019;104(9):1841–52. https://doi.org/10.3324/haematol.2018.207266.

Article  CAS  Google Scholar 

Oostindie SC, van der Horst HJ, Kil LP, Strumane K, Overdijk MB, van den Brink EN, et al. DuoHexaBody-CD37®, a novel biparatopic CD37 antibody with enhanced Fc-mediated hexamerization as a potential therapy for B-cell malignancies. Blood Cancer J. 2020;10(3):30. https://doi.org/10.1038/s41408-020-0292-7.

Article  PubMed  PubMed Central  Google Scholar 

Sopp JM, Peters SJ, Rowley TF, Oldham RJ, James S, Mockridge I, et al. On-target IgG hexamerisation driven by a C-terminal IgM tail-piece fusion variant confers augmented complement activation. Commun Biol. 2021;4(1):1031. https://doi.org/10.1038/s42003-021-02513-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520. https://doi.org/10.3389/fimmu.2014.00520.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Norderhaug L, Brekke OH, Bremnes B, Sandin R, Aase A, Michaelsen TE, et al. Chimeric mouse human IgG3 antibodies with an IgG4-like hinge region induce complement-mediated lysis more efficiently than IgG3 with normal hinge. Eur J Immunol. 1991;21(10):2379–84. https://doi.org/10.1002/eji.1830211013.

Article  CAS  PubMed  Google Scholar 

Natsume A, In M, Takamura H, Nakagawa T, Shimizu Y, Kitajima K, et al. Engineered antibodies of IgG1/IgG3 mixed isotype with enhanced cytotoxic activities. Can Res. 2008;68(10):3863–72. https://doi.org/10.1158/0008-5472.Can-07-6297.

Article  CAS  Google Scholar 

Natsume A, Shimizu-Yokoyama Y, Satoh M, Shitara K, Niwa R. Engineered anti-CD20 antibodies with enhanced complement-activating capacity mediate potent anti-lymphoma activity. Cancer Sci. 2009;100(12):2411–8. https://doi.org/10.1111/j.1349-7006.2009.01327.x.

Article  CAS  PubMed  Google Scholar 

Dekkers G, Treffers L, Plomp R, Bentlage AEH, de Boer M, Koeleman CAM, et al. Decoding the human immunoglobulin g-glycan repertoire reveals a spectrum of Fc-receptor- and complement-mediated-effector activities. Front Immunol. 2017;8:877. https://doi.org/10.3389/fimmu.2017.00877.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peschke B, Keller CW, Weber P, Quast I, Lünemann JD. Fc-galactosylation of human immunoglobulin gamma isotypes improves C1q binding and enhances complement-dependent cytotoxicity. Front Immunol. 2017;8:646. https://doi.org/10.3389/fimmu.2017.00646.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Osch TLJ, Nouta J, Derksen NIL, van Mierlo G, van der Schoot CE, Wuhrer M, et al. Fc galactosylation promotes hexamerization of human IgG1, leading to enhanced classical complement activation. J Immunol. 2021;207(6):1545–54. https://doi.org/10.4049/jimmunol.2100399.

留言 (0)

沒有登入
gif