Staying Ahead of the Game: How SARS-CoV-2 has Accelerated the Application of Machine Learning in Pandemic Management

Watson OJ, Barnsley G, Toor J, Hogan AB, Winskill P, Ghani AC. Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet Infect Dis. 2022;22(9):1293–302.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richards F, Kodjamanova P, Chen X, Li N, Atanasov P, Bennetts L, Patterson BJ, Yektashenas B, Mesa-Frias M, Tronczynski K. Economic burden of COVID-19: a systematic review. Clinicoecon Outcomes Res CEOR. 2022;14:293.

Article  Google Scholar 

Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020;127: 104362.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nicholls J, Dong XP, Jiang G, Peiris M. SARS: clinical virology and pathogenesis. Respirology. 2003;8:S6–8.

Article  PubMed  PubMed Central  Google Scholar 

Troyano-Hernáez P, Reinosa R, Holguín Á. Evolution of SARS-CoV-2 envelope, membrane, nucleocapsid, and spike structural proteins from the beginning of the pandemic to September 2020: a global and regional approach by epidemiological week. Viruses. 2021;13(2):243.

Article  PubMed  PubMed Central  Google Scholar 

V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19(3):155–70.

Article  PubMed  Google Scholar 

Bai C, Zhong Q, Gao GF. Overview of SARS-CoV-2 genome-encoded proteins. Sci China Life Sci. 2022;65(2):280–94.

Article  CAS  PubMed  Google Scholar 

Zhou T, Tsybovsky Y, Gorman J, Rapp M, Cerutti G, Chuang G-Y, Katsamba PS, Sampson JM, Schön A, Bimela J. Cryo-EM structures of SARS-CoV-2 spike without and with ACE2 reveal a pH-dependent switch to mediate endosomal positioning of receptor-binding domains. Cell Host Microbe. 2020;28(6):867.e865-879.e865.

Article  Google Scholar 

Nguyen HL, Lan PD, Thai NQ, Nissley DA, O’Brien EP, Li MS. Does SARS-CoV-2 bind to human ACE2 more strongly than does SARS-CoV? J Phys Chem B. 2020;124(34):7336–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Domingo P, Mur I, Pomar V, Corominas H, Casademont J, de Benito N. The four horsemen of a viral Apocalypse: the pathogenesis of SARS-CoV-2 infection (COVID-19). EBioMedicine. 2020;58: 102887.

Article  PubMed  PubMed Central  Google Scholar 

Viceconte G, Petrosillo N. COVID-19 R0: magic number or conundrum? Infect Dis Rep. 2020;12(1):8516.

Article  PubMed  PubMed Central  Google Scholar 

Bulut C, Kato Y. Epidemiology of COVID-19. Turk J Med Sci. 2020;50(9):563–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J: The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020;20(3):318–31.

Zheng C, Shao W, Chen X, Zhang B, Wang G, Zhang W. Real-world effectiveness of COVID-19 vaccines: a literature review and meta-analysis. Int J Infect Dis. 2022;114:252–60.

Article  CAS  PubMed  Google Scholar 

Lavecchia A. Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today. 2015;20(3):318–31.

Article  PubMed  Google Scholar 

Lo Y-C, Rensi SE, Torng W, Altman RB. Machine learning in chemoinformatics and drug discovery. Drug Discov Today. 2018;23(8):1538–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim E, Choi A-S, Nam H. Drug repositioning of herbal compounds via a machine-learning approach. BMC Bioinform. 2019;20(10):33–43.

Google Scholar 

Vo AH, Van Vleet TR, Gupta RR, Liguori MJ, Rao MS. An overview of machine learning and big data for drug toxicity evaluation. Chem Res Toxicol. 2019;33(1):20–37.

Article  PubMed  Google Scholar 

Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, Li B, Madabhushi A, Shah P, Spitzer M. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kowalewski J, Ray A. Predicting novel drugs for SARS-CoV-2 using machine learning from a > 10 million chemical space. Heliyon. 2020;6(8):e04639.

Article  PubMed  PubMed Central  Google Scholar 

Pham TH, Qiu Y, Zeng JC, Xie L, Zhang P. A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing. Nat Mach Intell. 2021;3(3):247–57.

Article  PubMed  PubMed Central  Google Scholar 

El-Behery H, Attia AF, El-Feshawy N, Torkey H. Efficient machine learning model for predicting drug-target interactions with case study for Covid-19. Comput Biol Chem. 2021;93:107536.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lv H, Shi L, Berkenpas JW, Dao FY, Zulfiqar H, Ding H, Zhang Y, Yang LM, Cao RZ. Application of artificial intelligence and machine learning for COVID-19 drug discovery and vaccine design. Brief Bioinform. 2021;1–10:bbab320. https://doi.org/10.1093/bib/bbab320.

Liu Y, Gan J, Wang R, Yang X, Xiao Z, Cao Y. DrugDevCovid19: an atlas of anti-COVID-19 compounds derived by computer-aided drug design. Molecules. 2022;27(3):683.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta A, Müller AT, Huisman BJH, Fuchs JA, Schneider P, Schneider G. Generative recurrent networks for de novo drug design. Mol Inf. 2018;37(1–2):1700111.

Article  Google Scholar 

Zhang L, Zhang H, Ai H, Hu H, Li S, Zhao J, Liu H. Applications of machine learning methods in drug toxicity prediction. Curr Top Med Chem. 2018;18(12):987–97.

Article  CAS  PubMed  Google Scholar 

White J. PubMed 2.0. Med Ref Serv Q. 2020;39(4):382–7.

Article  PubMed  Google Scholar 

Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, Connor R, Funk K, Kelly C, Kim S, Madej T, Marchler-Bauer A, Lanczycki C, Lathrop S, Lu Z, Thibaud-Nissen F, Murphy T, Phan L, Skripchenko Y, Tse T, Wang J, Williams R, Trawick BW, Pruitt KD, Sherry ST. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022;50(D1):D20–6. https://doi.org/10.1093/nar/gkab1112.

Zhang L, Tan J, Han D, Zhu H. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today. 2017;22(11):1680–5.

Article  PubMed  Google Scholar 

Ekins S, Puhl AC, Zorn KM, Lane TR, Russo DP, Klein JJ, Hickey AJ, Clark AM. Exploiting machine learning for end-to-end drug discovery and development. Nat Mater. 2019;18(5):435–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patel L, Shukla T, Huang X, Ussery DW, Wang S. Machine learning methods in drug discovery. Molecules. 2020;25(22):5277.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Castillo TJM, Arif M, Niessen WJ, Schoots IG, Veenland JF. Automated classification of significant prostate cancer on MRI: a systematic review on the performance of machine learning applications. Cancers (Basel). 2020;12(6):1606.

Article  Google Scholar 

Cuocolo R, Cipullo MB, Stanzione A, Romeo V, Green R, Cantoni V, Ponsiglione A, Ugga L, Imbriaco M. Machine learning for the identification of clinically significant prostate cancer on MRI: a meta-analysis. Eur Radiol. 2020;30:6877–87.

Article  PubMed  Google Scholar 

Cuocolo R, Cipullo MB, Stanzione A, Ugga L, Romeo V, Radice L, Brunetti A, Imbriaco M. Machine learning applications in prostate cancer magnetic resonance imaging. Eur Radiol Exp. 2019;3(1):1–8.

Article  Google Scholar 

Yang H, Sun L, Li W, Liu G, Tang Y. In silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts. Front Chem. 2018;6:30.

Article  PubMed  PubMed Central  Google Scholar 

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

Sinaga KP, Yang M-S. Unsupervised K-means clustering algorithm. IEEE Access. 2020;8:80716–27.

Article  Google Scholar 

Kodinariya TM, Makwana PR. Review on determining number of cluster in K-means clustering. Int J. 2013;1(6):90–5.

Google Scholar 

Pham DT, Dimov SS, Nguyen CD. Selection of K in K-means clustering. Proc Inst Mech Eng C J Mech Eng Sci. 2005;219(1):103–19.

Article  Google Scholar 

Likas A, Vlassis N, Verbeek JJ. The global k-means clustering algorithm. Pattern Recogn. 2003;36(2):451–61.

Article  Google Scholar 

Hartigan JA, Wong MA. Algorithm AS 136: a k-means clustering algorithm. J R Stat Soc Ser C (Appl Stat). 1979;28(1):100–8.

Google Scholar 

Golmohammadi H, Dashtbozorgi Z, Acree WE Jr. Quantitative structure–activity relationship prediction of blood-to-brain partitioning behavior using support vector machine. Eur J Pharm Sci. 2012;47(2):421–9.

Article  CAS  PubMed  Google Scholar 

Shar PA, Tao W, Gao S, Huang C, Li B, Zhang W, Shahen M, Zheng C, Bai Y, Wang Y. Pred-binding: large-scale protein–ligand binding affinity prediction. J Enzyme Inhib Med Chem. 2016;31(6):1443–50.

Article  CAS 

留言 (0)

沒有登入
gif