Gut microbes involvement in gastrointestinal cancers through redox regulation

Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021 May;71(3):209–49.

Sekirov I, Russell SL, Antunes LC, et al. Gut microbiota in health and disease. Physiol Rev. 2010 Jul;90(3):859–904.

Helmink BA, Khan MAW, Hermann A, et al. The microbiome, cancer, and cancer therapy. Nat Med. 2019 Mar;25(3):377–88.

Garrett WS. Cancer and the microbiota. Science. 2015 Apr 3;348(6230):80 – 6.

Tsilimigras MC, Fodor A, Jobin C. Carcinogenesis and therapeutics: the microbiota perspective. Nat Microbiol. 2017 Feb;22:2:17008.

Amieva M, Peek RM Jr. Pathobiology of Helicobacter pylori-Induced Gastric Cancer. Gastroenterology. 2016 Jan;150(1):64–78.

Fox JG, Wang TC. Inflammation, atrophy, and gastric cancer. J Clin Invest 2007 Jan;117(1):60–9.

Nesić D, Hsu Y, Stebbins CE. Assembly and function of a bacterial genotoxin. Nat 2004 May 27;429(6990):429–33.

Huycke MM, Abrams V, Moore DR. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis. 2002;23:529–36.

Article  CAS  PubMed  Google Scholar 

Wang X, Allen TD, May RJ, et al. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res. 2008;68:9909–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun J, Kato I. Gut microbiota, inflammation and colorectal cancer. Genes Dis. 2016 Jun;3(2):130–43.

Bijnens K, Jaenen V, Wouters A et al. A Spatiotemporal Characterisation of Redox Molecules in Planarians, with a Focus on the Role of Glutathione during Regeneration. Biomolecules. 2021 May 11;11(5):714.

Horspool AM, Chang HC. Neuron-specific regulation of superoxide dismutase amid pathogen-induced gut dysbiosis. Redox Biol. 2018 Jul;17:377–85.

Campbell EL, Colgan SP. Control and dysregulation of redox signalling in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol. 2019 Feb;16(2):106–20.

Xu CC, Yang SF, Zhu LH, et al. Regulation of N-acetyl cysteine on gut redox status and major microbiota in weaned piglets. J Anim Sci. 2014 Apr;92(4):1504–11.

Bayir H. Reactive oxygen species. Crit Care Med. 2005 Dec;33(12 Suppl):498–501.

Hancock JT. Considerations of the importance of redox state for reactive nitrogen species action. J Exp Bot 2019 Aug 29;70(17):4323–31.

Olson KR. Are reactive Sulfur Species the new reactive oxygen species? Antioxid Redox Signal. 2020 Dec 1;33(16):1125–42.

Li ZY, Wang L, Liu YL et al. Overlooked enhancement of chloride ion on the transformation of reactive species in peroxymonosulfate/Fe(II)/NH2OH system. Water Res. 2021 May 1;195:116973.

Gao P, Pan W, Li N et al. Fluorescent probes for organelle-targeted bioactive species imaging. Chem Sci 2019 May 24;10(24):6035–71.

Robles-Rengel R, Florencio FJ, Muro-Pastor MI. Redox interference in nitrogen status via oxidative stress is mediated by 2-oxoglutarate in cyanobacteria. New Phytol. 2019 Oct;224(1):216–28.

Giles GI, Nasim MJ, Ali W et al. The Reactive Sulfur Species Concept: 15 Years On. Antioxidants (Basel). 2017 May 23;6(2):38.

Sannasimuthu A, Sharma D, Paray BA, et al. Intracellular oxidative damage due to antibiotics on gut bacteria reduced by glutathione oxidoreductase-derived antioxidant molecule GM15. Arch Microbiol. 2020 Jul;202(5):1127–33.

Skulachev VP. Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases. J Alzheimers Dis. 2012;28(2):283–9.

Article  CAS  PubMed  Google Scholar 

Griguer CE, Oliva CR, Kelley EE et al. Xanthine oxidase-dependent regulation of hypoxia-inducible factor in cancer cells. Cancer Res 2006 Feb 15;66(4):2257–63.

Nanduri J, Vaddi DR, Khan SA, et al. Xanthine oxidase mediates hypoxia-inducible factor-2α degradation by intermittent hypoxia. PLoS ONE. 2013 Oct;4(10):e75838.

Biasi F, Leonarduzzi G, Oteiza PI et al. Inflammatory bowel disease: mechanisms, redox considerations, and therapeutic targets. Antioxid Redox Signal 2013 Nov 10;19(14):1711–47.

Aguiar PH, Furtado C, Repolês BM, et al. Oxidative stress and DNA lesions: the role of 8-oxoguanine lesions in Trypanosoma cruzi cell viability. PLoS Negl Trop Dis. 2013 Jun;13(6):e2279.

Spickett CM, Pitt AR. Modification of proteins by reactive lipid oxidation products and biochemical effects of lipoxidation. Essays Biochem 2020 Feb 17;64(1):19–31.

Boese AC, Kang S. Mitochondrial metabolism-mediated redox regulation in cancer progression. Redox Biol. 2021 Jun;42:101870.

González-Flecha B, Demple B. Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J Biol Chem 1995 Jun 9;270(23):13681–7.

Nothling MD, Cao H, McKenzie TG et al. Bacterial redox potential Powers Controlled Radical polymerization. J Am Chem Soc 2021 Jan 13;143(1):286–93.

Xu J, Xu C, Chen X, et al. Regulation of an antioxidant blend on intestinal redox status and major microbiota in early weaned piglets. Nutrition. 2014 May;30(5):584–9.

Camerini S, Marcocci L, Picarazzi L et al. Type E Botulinum Neurotoxin-Producing Clostridium butyricum strains are aerotolerant during vegetative growth. mSystems. 2019 Apr 30;4(2):e00299–18.

Zhou JJ, Shen JT, Wang XL, et al. Metabolism, morphology and transcriptome analysis of oscillatory behavior of Clostridium butyricum during long-term continuous fermentation for 1,3-propanediol production. Biotechnol Biofuels. 2020 Nov;25(1):191.

Szczepanowski P, Noszka M, Żyła-Uklejewicz D, et al. HP1021 is a redox switch protein identified in Helicobacter pylori. Nucleic Acids Res. 2021 Jul;9(12):6863–79.

Keum N, Giovannucci EL. Folic acid fortification and colorectal cancer risk. Am J Prev Med. 2014 Mar;46(3 Suppl 1):65–72.

Jose S, Bhalla P, Suraishkumar GK. Oxidative stress decreases the redox ratio and folate content in the gut microbe, Enterococcus durans (MTCC 3031). Sci Rep. 2018 Aug;14(1):12138.

Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signaling agents. Nat Rev Mol Cell Biol. 2020 Jul;21(7):363–83.

Grasberger H, El-Zaatari M, Dang DT, et al. Dual oxidases control release of hydrogen peroxide by the gastric epithelium to prevent Helicobacter felis infection and inflammation in mice. Gastroenterology. 2013 Nov;145(5):1045–54.

Wen J, Wang Y, Gao C, et al. Helicobacter pylori infection promotes aquaporin 3 expression via the ROS-HIF-1α-AQP3-ROS loop in stomach mucosa: a potential novel mechanism for cancer pathogenesis. Oncogene. 2018 Jun;37(26):3549–61.

Lesiów MK, Komarnicka UK, Kyzioł A, et al. ROS-mediated lipid peroxidation as a result of Cu(ii) interaction with FomA protein fragments of F. nucleatum: relevance to colorectal carcinogenesis. Metallomics. 2019 Dec;11(12):2066–77.

Lyons NJ, Giri R, Begun J, Clark D, Proud D, He Y, Hooper JD, Kryza T. Reactive oxygen species as mediators of Disease Progression and Therapeutic Response in Colorectal Cancer. Antioxid Redox Signal. 2023 Apr 25.

Nie S, Wang A, Yuan Y. Comparison of clinicopathological parameters, prognosis, micro-ecological environment and metabolic function of Gastric Cancer with or without Fusobacterium sp. Infection. J Cancer. 2021 Jan 1;12(4):1023–1032.

Wang Y, Li H, Li T, et al. Cytoprotective effect of Streptococcus thermophilus against oxidative stress mediated by a novel peroxidase (EfeB). J Dairy Sci. 2018 Aug;101(8):6955–63.

Zhang C, Xin Y, Wang Y et al. Identification of a novel dye-decolorizing peroxidase, EfeB, translocated by a twin-arginine translocation system in Streptococcus thermophilus CGMCC 7.179. Appl Environ Microbiol. 2015 Sep;81(18):6108–19.

Strickertsson JA, Desler C, Martin-Bertelsen T, et al. Enterococcus faecalis infection causes inflammation, intracellular oxphos-independent ROS production, and DNA damage in human gastric cancer cells. PLoS ONE. 2013 Apr;30(4):e63147.

Davalli P, Marverti G, Lauriola A, et al. Targeting Oxidatively Induced DNA damage response in Cancer: Opportunities for Novel Cancer Therapies. Oxid Med Cell Longev. 2018 Mar;2018:27.

Kaneko K, Akuta T, Sawa T, et al. Mutagenicity of 8-nitroguanosine, a product of nitrative nucleoside modification by reactive nitrogen oxides, in mammalian cells. Cancer Lett. 2008;262:239–47.

Article  CAS  PubMed  Google Scholar 

Park SH, Kim Y, Ra JS, et al. Timely termination of repair DNA synthesis by ATAD5 is important in oxidative DNA damage-induced single-strand break repair. Nucleic Acids Res. 2021 Nov;18(20):11746–64.

Jamsen JA, Sassa A, Perera L et al. Structural basis for proficient oxidized ribonucleotide insertion in double strand break repair. Nat Commun 2021 Aug 20;12(1):5055.

Cannan WJ, Tsang BP, Wallace SS, et al. Nucleosomes suppress the formation of double-strand DNA breaks during attempted base excision repair of clustered oxidative damages. J Biol Chem. 2014;289(29):19881–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang S, Chen Z, Zhu S, et al. PRDX2 protects against oxidative stress induced by H. pylori and promotes resistance to cisplatin in gastric cancer. Redox Biol. 2020 Jan;28:101319.

Salzano S, Checconi P, Hanschmann EM et al. Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12157-62.

Somyajit K, Gupta R, Sedlackova H et al. Redox-sensitive alteration of replisome architecture safeguards genome integrity. Sci 2017 Nov 10;358(6364):797–802.

Sedletska Y, Radicella JP, Sage E. Replication fork collapse is a major cause of the high mutation frequency at three-base lesion clusters. Nucleic Acids Res. 2013;41(20):9339–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Degtyareva NP, Heyburn L, Sterling J, et al. Oxidative stress-induced mutagenesis in single-strand DNA occurs primarily at cytosines and is DNA polymerase zeta-dependent only for adenines and guanines. Nucleic Acids Res. 2013 Oct;41(19):8995–9005.

Goodwin AC, Destefano Shields CE, Wu S et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci U S A 2011 Sep 13;108(37):15354–9.

Tan J, Duan M, Yadav T et al. An R-loop-initiated CSB-RAD52-POLD3 pathway suppresses ROS-induced telomeric DNA breaks. Nucleic Acids Res 2020 Feb 20;48(3):1285–300.

Meng J, Fu L, Liu K et al. Global profiling of distinct cysteine redox forms reveals wide-ranging redox regulation in C. elegans. Nat Commun 2021 Mar 3;12(1):1415.

Moldogazieva NT, Lutsenko SV, Terentiev AA. Reactive oxygen and Nitrogen Species-Induced protein modifications: implication in carcinogenesis and anticancer therapy. Cancer Res 2018 Nov 1;78(21):6040–7.

Filipovic MR, Zivanovic J, Alvarez B et al. Chemical Biology of H2S Signaling through Persulfidation. Chem Rev 2018 Feb 14;118(3):1253–337.

Song IK, Lee JJ, Cho JH et al. Degradation of Redox-Sensitive Proteins including peroxiredoxins and DJ-1 is promoted by oxidation-induced conformational changes and ubiquitination. Sci Rep 2016 Oct 5;6:34432.

Smith KA, Waypa GB, Schumacker PT. Redox signaling during hypoxia in mammalian cells. Redox Biol. 2017 Oct;13:228–34.

Abd-El-Raouf R, Ouf SA, Gabr MM et al. Escherichia coli foster bladder cancer cell line progression via epithelial mesenchymal transition, stemness and metabolic reprogramming. Sci Rep. 2020 Oct 22;10(1):18024.

Hurd TR, Collins Y, Abakumova I et al. Inactivation of pyruvate dehydrogenase kinase 2 by mitochondrial reactive oxygen species. J Biol Chem. 2012 Oct 12;287(42):35153–35160.

Humphries KM, Szweda LI. Selective inactivation of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry. 1998 Nov;10(45):15835–41.

Ezraty B, Gennaris A, Barras F, et al. Oxidative stress, protein damage and repair in bacteria. Nat Rev Microbiol. 2017 Jul;15(7):385–96.

Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019 May;23:101107.

Ingold I, Berndt C, Schmitt S et al. Selenium utilization by GPX4 is required to Prevent Hydroperoxide-Induced ferroptosis. Cell 2018 Jan 25;172(3):409–422e21.

Nordzieke DE, Medraño-Fernandez I. The plasma membrane: a platform for intra- and intercellular Redox Signaling. Antioxidants (Basel). 2018 Nov 20;7(11):168.

Wang G, Yu Y, Wang YZ, et al. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. J Cell Physiol. 2019 Aug;234(10):17023–49.

Houghton CA, Fassett RG, Coombes JS. Sulforaphane and other Nutrigenomic Nrf2 activators: can the Clinician’s expectation be matched by the reality? Oxid Med Cell Longev. 2016;2016:7857186.

Article  PubMed  PubMed Central  Google Scholar 

Afrin S, Giampieri F, Gasparrini M et al. Dietary phytochemicals in colorectal cancer prevention and treatment: a focus on the molecular mechanisms involved. Biotechnol Adv 2020 Jan-Feb;38:107322.

Chikara S, Nagaprashantha LD, Singhal J et al. Oxidative stress and dietary phytochemicals: role in cancer chemoprevention and treatment. Cancer Lett 2018 Jan 28;413:122–34.

Itoh K, Wakabayashi N, Katoh Y et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999 Jan 1;13(1):76–86.

González-Bosch C, Boorman E, Zunszain PA, et al. Short-chain fatty acids as modulators of redox signaling in health and disease. Redox Biol. 2021 Nov;47:102165.

Ge W, Zhao K, Wang X et al. iASPP is an antioxidative factor and drives Cancer Growth and Drug Resistance by competing with Nrf2 for Keap1 binding. Cancer Cell 2017 Nov 13;32(5):561–573e6.

Pant K, Yadav AK, Gupta P, et al. Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells. Redox Biol. 2017 Aug;12:340–9.

Inoue T, Kato K, Kato H, et al. Level of reactive oxygen species induced by p21Waf1/CIP1 is critical for the determination of cell fate. Cancer Sci. 2009 Jul;100(7):1275–83.

Macip S, Igarashi M, Fang L et al. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J. 2002 May 1;21(9):2180-8.

Schlörmann W, Horlebein C, Hübner SM et al. Potential Role of ROS in Butyrate- and Dietary Fiber-Mediated Growth Inhibition and Modulation of Cell Cycle-, Apoptosis- and Antioxidant-Relevant Proteins in LT97 Colon Adenoma and HT29 Colon Carcinoma Cells. Cancers (Basel). 2023 Jan 10;15(2):440.

Ramasamy S, Singh S, Taniere P, et al. Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation. Am J Physiol Gastrointest Liver Physiol. 2006 Aug;291(2):G288–96.

Magee EA, Richardson CJ, Hughes R, et al. Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans. Am J Clin Nutr. 2000 Dec;72(6):1488–94.

Yazici C, Wolf PG, Kim H, et al. Race-dependent association of sulfidogenic bacteria with colorectal cancer. Gut. 2017 Nov;66(11):1983–94.

Nguyen LH, Cao Y, Hur J, et al. The Sulfur Microbial Diet is Associated with increased risk of early-onset Colorectal Cancer Precursors. Gastroenterology. 2021 Nov;161(5):1423–1432e4.

Attene-Ramos MS, Wagner ED, Gaskins HR et al. Hydrogen sulfide induces direct radical-associated DNA damage. Mol Cancer Res 2007 May;5(5):455–9.

Tang H, Kong Y, Guo J, et al. Diallyl disulfide suppresses proliferation and induces apoptosis in human gastric cancer through Wnt-1 signaling pathway by up-regulation of miR-200b and miR-22. Cancer Lett. 2013 Oct;28(1):72–81.

Lee ZW, Teo XY, Tay EY, et al. Utilizing hydrogen sulfide as a novel anti-cancer agent by targeting cancer glycolysis and pH imbalance. Br J Pharmacol. 2014 Sep;171(18):4322–36.

Salimian Rizi B, Achreja A, Nagrath D. Nitric oxide: the Forgotten child of Tumor Metabolism. Trends Cancer. 2017 Sep;3(9):659–72.

Grimm EA, Sikora AG, Ekmekcioglu S. Molecular pathways: inflammation-associated nitric-oxide production as a cancer-supporting redox mechanism and a potential therapeutic target. Clin Cancer Res 2013 Oct 15;19(20):5557–63.

Hu Y, Lv T, Ma Y et al. Nanoscale Coordination Polymers for synergistic NO and chemodynamic therapy of Liver Cancer. Nano Lett 2019 Apr 10;19(4):2731–8.

Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007 Jan;87(1):315–424.

Ferrer-Sueta G, Campolo N, Trujillo M et al. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018 Feb 14;118(3):1338–408.

Wink DA, Kasprzak KS, Maragos CM et al. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Sci 1991 Nov 15;254(5034):1001–3.

Yuan Z, Lin C, He Y, et al. Near-Infrared light-triggered nitric-oxide-enhanced photodynamic therapy and low-temperature Photothermal Therapy for Biofilm Elimination. ACS Nano. 2020 Mar;24(3):3546–62.

Kim J, Yung BC, Kim WJ et al. Combination of nitric oxide and drug delivery systems: tools for overcoming drug resistance in chemotherapy. J Control Release 2017 Oct 10;263:223–30.

Crowley SM, Vallance BA. Microbial respiration in the Colon: using H2O2 to catch your breath. Cell Host Microbe 2020 Dec 9;28(6):771–3.

Stone JR, Yang S. Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal 2006 Mar-Apr;8(3–4):243–70.

Birg A, Ritz N, Barton LL, et al. Hydrogen availability is dependent on the actions of both hydrogen-producing and hydrogen-consuming microbes. Dig Dis Sci. 2023 Apr;68(4):1253–9.

Yan H, Fan M, Liu H, et al. Microbial hydrogen “manufactory” for enhanced gas therapy and self-activated immunotherapy via reduced immune escape. J Nanobiotechnol. 2022 Jun;15(1):280.

Bell HN, Rebernick RJ, Goyert J et al. Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance. Cancer Cell 2022 Feb 14;40(2):185–200e6.

Martín-Cabrejas I, Langa S, Gaya P, et al. Optimization of reuterin production in cheese by Lactobacillus reuteri. J Food Sci Technol. 2017 Apr;54(5):1346–9.

Zhang Z, Wang K, Oh JH, et al. A phylogenetic view on the role of glycerol for growth enhancement and reuterin formation in Limosilactobacillus reuteri. Front Microbiol. 2020 Dec;21:11:601422.

Li Q, Hu W, Liu WX et al. Streptococcus thermophilus inhibits colorectal tumorigenesis through secreting β-Galactosidase. Gastroenterol 2021 Mar;160(4):1179–1193e14.

Goodman RP, Markhard AL, Shah H, et al. Hepatic NADH reductive stress underlies common variation in metabolic traits. Nature. 2020 Jul;583(7814):122–6.

Pérez S, Taléns-Visconti R, Rius-Pérez S, et al. Redox signaling in the gastrointestinal tract. Free Radic Biol Med. 2017 Mar;104:75–103.

Kajla S, Mondol AS, Nagasawa A, et al. A crucial role for Nox 1 in redox-dependent regulation of Wnt-β-catenin signaling. FASEB J. 2012 May;26(5):2049–59.

Dharmaraja AT. Role of reactive oxygen species (ROS) in therapeutics and drug resistance in Cancer and Bacteria. J Med Chem 2017 Apr 27;60(8):3221–40.

Fan JX, Peng MY, Wang H, et al. Engineered Bacterial Bioreactor for Tumor Therapy via Fenton-Like reaction with localized H2 O2 generation. Adv Mater. 2019 Apr;31(16):e1808278.

Zhou J, Li M, Chen Q et al. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery. Nat Commun 2022 Jun 14;13(1):3432.

Wang JW, Chen QW, Luo GF et al. A self-driven Bioreactor based on Bacterium-Metal-Organic Framework Biohybrids for Boosting Chemotherapy via Cyclic Lactate Catabolism. ACS Nano. 2021 Nov 6.

Chen QW, Wang JW, Wang XN et al. Inhibition of Tumor Progression through the Coupling of Bacterial Respiration with Tumor Metabolism. Angew Chem Int Ed Engl. 2020 Nov 23;59(48):21562–21570.

Pinchuk GE, Rodionov DA, Yang C, et al. Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization. Proc Natl Acad Sci U S A. 2009 Feb;24(8):2874–9.

Zeng X, Li X, Yue Y et al. Ameliorative effect of Saccharomyces cerevisiae JKSP39 on Fusobacterium nucleatum and Dextran Sulfate Sodium-Induced Colitis Mouse Model. J Agric Food Chem 2022 Nov 9;70(44):14179–92.

Huang L, Wang J, Kong L et al. ROS-responsive hyaluronic acid hydrogel for targeted delivery of probiotics to relieve colitis. Int J Biol Macromol. 2022 Dec 1;222(Pt A):1476–1486.

Liu J, Wang Y, Heelan WJ et al. Mucoadhesive probiotic backpacks with ROS nanoscavengers enhance the bacteriotherapy for inflammatory bowel diseases. Sci Adv 2022 Nov 11;8(45):eabp8798.

Nantapong N, Murata R, Trakulnaleamsai S, et al. The effect of reactive oxygen species (ROS) and ROS-scavenging enzymes, superoxide dismutase and catalase, on the thermotolerant ability of Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2019 Jul;103(13):5355–66.

留言 (0)

沒有登入
gif