Imprinting disorders

Mackay, D. J. G. & Temple, I. K. Human imprinting disorders: principles, practice, problems and progress. Eur. J. Med. Genet. 60, 618–626 (2017).

PubMed  Google Scholar 

Nakamura, A. et al. A case of paternal uniparental isodisomy for chromosome 7 associated with overgrowth. J. Med. Genet. 55, 567–570 (2018).

CAS  PubMed  Google Scholar 

Lazier, J., Martin, N., Stavropoulos, J. D. & Chitayat, D. Maternal uniparental disomy for chromosome 6 in a patient with IUGR, ambiguous genitalia, and persistent Mullerian structures. Am. J. Med. Genet. A 170, 3227–3230 (2016).

CAS  PubMed  Google Scholar 

Kagami, M. et al. ZNF445: a homozygous truncating variant in a patient with Temple syndrome and multilocus imprinting disturbance. Clin. Epigenetics 13, 119 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Eggermann, T. et al. Growth restriction and genomic imprinting-overlapping phenotypes support the concept of an imprinting network. Genes 12, 585 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Hedgeman, E. et al. Long-term health outcomes in patients with Prader–Willi syndrome: a nationwide cohort study in Denmark. Int. J. Obes. 41, 1531–1538 (2017).

CAS  Google Scholar 

Lokulo-Sodipe, O. et al. Phenotype of genetically confirmed Silver-Russell syndrome beyond childhood. J. Med. Genet. 57, 683–691 (2020).

PubMed  Google Scholar 

Sommese, M. & Corrado, B. A comprehensive approach to rehabilitation interventions in patients with angelman syndrome: a systematic review of the literature. Neurol. Int. 13, 359–370 (2021).

PubMed  PubMed Central  Google Scholar 

Ballard, L. M. et al. Experiences of adolescents living with Silver–Russell syndrome. Arch. Dis. Child. 106, 1195–1201 (2021).

PubMed  Google Scholar 

Patten, M. M., Cowley, M., Oakey, R. J. & Feil, R. Regulatory links between imprinted genes: evolutionary predictions and consequences. Proc. Biol. Sci. 283, 20152760 (2016).

PubMed  PubMed Central  Google Scholar 

Soellner, L. et al. Recent advances in imprinting disorders. Clin. Genet. 91, 3–13 (2017).

CAS  PubMed  Google Scholar 

Yakoreva, M. et al. A retrospective analysis of the prevalence of imprinting disorders in Estonia from 1998 to 2016. Eur. J. Hum. Genet. 27, 1649–1658 (2019).

PubMed  PubMed Central  Google Scholar 

Oiglane-Shlik, E. et al. Prevalence of Angelman syndrome and Prader–Willi syndrome in Estonian children: sister syndromes not equally represented. Am. J. Med. Genet. A 140, 1936–1943 (2006).

PubMed  Google Scholar 

Thomson, A. K., Glasson, E. J. & Bittles, A. H. A long-term population-based clinical and morbidity review of Prader–Willi syndrome in Western Australia. J. Intellect. Disabil. Res. 50, 69–78 (2006).

CAS  PubMed  Google Scholar 

Lionti, T., Reid, S. M., White, S. M. & Rowell, M. M. A population-based profile of 160 Australians with Prader–Willi syndrome: trends in diagnosis, birth prevalence and birth characteristics. Am. J. Med. Genet. A 167A, 371–378 (2015).

PubMed  Google Scholar 

Acuna-Hidalgo, R., Veltman, J. A. & Hoischen, A. New insights into the generation and role of de novo mutations in health and disease. Genome Biol. 17, 241 (2016).

PubMed  PubMed Central  Google Scholar 

Chantot-Bastaraud, S. et al. Formation of upd(7)mat by trisomic rescue: SNP array typing provides new insights in chromosomal nondisjunction. Mol. Cytogenet. 10, 28 (2017).

PubMed  PubMed Central  Google Scholar 

Carli, D. et al. Clinical and molecular characterization of patients affected by Beckwith–Wiedemann spectrum conceived through assisted reproduction techniques. Clin. Genet. 102, 314–323 (2022).

CAS  PubMed  PubMed Central  Google Scholar 

Cortessis, V. K. et al. Comprehensive meta-analysis reveals association between multiple imprinting disorders and conception by assisted reproductive technology. J. Assist. Reprod. Genet. 35, 943–952 (2018).

PubMed  PubMed Central  Google Scholar 

Maher, E. R. et al. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J. Med. Genet. 40, 62–64 (2003).

CAS  PubMed  PubMed Central  Google Scholar 

Doornbos, M. E., Maas, S. M., McDonnell, J., Vermeiden, J. P. & Hennekam, R. C. Infertility, assisted reproduction technologies and imprinting disturbances: a Dutch study. Hum. Reprod. 22, 2476–2480 (2007).

PubMed  Google Scholar 

Hauer, N. N. et al. Clinical relevance of systematic phenotyping and exome sequencing in patients with short stature. Genet. Med. 20, 630–638 (2018).

CAS  PubMed  Google Scholar 

Freire, B. L. et al. High frequency of genetic/epigenetic disorders in short stature children born with very low birth weight. Am. J. Med. Genet. A 188, 2599–2604 (2022).

CAS  PubMed  Google Scholar 

Brioude, F. et al. Overgrowth syndromes — clinical and molecular aspects and tumour risk. Nat. Rev. Endocrinol. 15, 299–311 (2019).

CAS  PubMed  Google Scholar 

Temple, I. K. & Mackay, D. J. G. Diabetes mellitus, 6q24-related transient neonatal. GeneReviews [online] https://www.ncbi.nlm.nih.gov/books/NBK1534/ (updated 13 Sep 2018).

Vilchis, Z. et al. The high frequency of genetic diseases in hypotonic infants referred by neuropediatrics. Am. J. Med Genet A 164A, 1702–1705 (2014).

PubMed  Google Scholar 

Scott, R. H. et al. Constitutional 11p15 abnormalities, including heritable imprinting center mutations, cause nonsyndromic Wilms tumor. Nat. Genet. 40, 1329–1334 (2008).

CAS  PubMed  Google Scholar 

Bliek, J. et al. Lessons from BWS twins: complex maternal and paternal hypomethylation and a common source of haematopoietic stem cells. Eur. J. Hum. Genet. 17, 1625–1634 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Riess, A. et al. First report on concordant monozygotic twins with Silver-Russell syndrome and ICR1 hypomethylation. Eur. J. Med. Genet. 59, 1–4 (2016).

PubMed  Google Scholar 

Monk, D., Sanchez-Delgado, M. & Fisher, R. NLRPs, the subcortical maternal complex and genomic imprinting. Reproduction 154, R161–R170 (2017).

CAS  PubMed  Google Scholar 

Eggermann, T. et al. Trans-acting genetic variants causing multilocus imprinting disturbance (MLID): common mechanisms and consequences. Clin. Epigenetics 14, 41 (2022).

CAS  PubMed  PubMed Central  Google Scholar 

Maupetit-Mehouas, S. et al. Imprinting control regions (ICRs) are marked by mono-allelic bivalent chromatin when transcriptionally inactive. Nucleic Acids Res. 44, 621–635 (2016).

CAS  PubMed  Google Scholar 

Henckel, A. et al. Histone methylation is mechanistically linked to DNA methylation at imprinting control regions in mammals. Hum. Mol. Genet. 18, 3375–3383 (2009).

CAS  PubMed  Google Scholar 

Cai, X. & Cullen, B. R. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13, 313–316 (2007).

CAS  PubMed  PubMed Central  Google Scholar 

Mackay, D. J. G. & Temple, I. K. Ongoing challenges in the diagnosis of 11p15.5-associated imprinting disorders. Mol. Diagn. Ther. 26, 263–272 (2022).

CAS  PubMed  Google Scholar 

Baran, Y. et al. The landscape of genomic imprinting across diverse adult human tissues. Genome Res. 25, 927–936 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Horsthemke, B. Mechanisms of imprint dysregulation. Am. J. Med. Genet. C. Semin. Med. Genet. 154C, 321–328 (2010).

CAS  PubMed  Google Scholar 

Valente, F. M. et al. Transcription alterations of KCNQ1 associated with imprinted methylation defects in the Beckwith–Wiedemann locus. Genet. Med. 21, 1808–1820 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Sparago, A., Cerrato, F. & Riccio, A. Is ZFP57 binding to H19/IGF2:IG-DMR affected in Silver–Russell syndrome. Clin. Epigenetics 10, 23 (2018).

PubMed  PubMed Central  Google Scholar 

Demars, J. et al. Analysis of the IGF2/H19 imprinting control region uncovers new genetic defects, including mutations of OCT-binding sequences, in patients with 11p15 fetal growth disorders. Hum. Mol. Genet. 19, 803–814 (2010).

CAS  PubMed  Google Scholar 

Mackay, D. J. et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat. Genet. 40, 949–951 (2008).

CAS  PubMed  Google Scholar 

Quenneville, S. et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell 44, 361–372 (2011).

CAS  PubMed  PubMed Central  Google Scholar 

Anvar, Z. et al. ZFP57 recognizes multiple and closely spaced sequence motif variants to maintain repressive epigenetic marks in mouse embryonic stem cells. Nucleic Acids Res. 44, 1118–1132 (2016).

CAS  PubMed  Google Scholar 

Jiang, W. et al. ZFP57 dictates allelic expression switch of target imprinted genes. Proc. Natl Acad. Sci. USA 118, e2005377118 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Geoffron, S. et al. Chromosome 14q32.2 imprinted region disruption as an alternative molecular diagnosis of Silver–Russell syndrome. J. Clin. Endocrinol. Metab. 103, 2436–2446 (2018).

PubMed  Google Scholar 

Goto, M., Kagami, M., Nishimura, G. & Yamagata, T. A patient with Temple syndrome satisfying the clinical diagnostic criteria of Silver–Russell syndrome. Am. J. Med. Genet. A 170, 2483–2485 (2016).

留言 (0)

沒有登入
gif