Updates on Malaria Epidemiology and Prevention Strategies

••World Health Organization. World malaria report 2022. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO. (accessed 3–1–2023). https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022. Essential comprehensive up-to-date assessment of trends in global malaria control and elimination published by the World Health Organization.

Steffen R, Lautenschlager S, Fehr J. Travel restrictions and lockdown during the COVID-19 pandemic—impact on notified infectious diseases in Switzerland. J Travel Med. 2021;27:1–3. https://doi.org/10.1093/JTM/TAAA180.

Article  Google Scholar 

Norman FF, Treviño-Maruri B, Giardín JMR, Gullón-Peña B, Salvador F, Serre N, et al. Trends in imported malaria during the COVID-19 pandemic, Spain (+Redivi Collaborative Network). J Travel Med. 2022;29:1–6. https://doi.org/10.1093/jtm/taac083.

Article  Google Scholar 

Choy B, Bristowe H, Khozoee B, Lampejo T. Increased imported severe Plasmodium falciparum malaria involving hyperparasitaemia (>10%) in a UK hospital following relaxation of COVID-19 restrictions compared to the pre-pandemic period. J Travel Med. 2022;29:1–3. https://doi.org/10.1093/jtm/taac116.

Article  Google Scholar 

Mironova VA, Shartova NV, Beljaev AE, Varentsov MI, Korennoy FI, Grishchenko MY. Re-introduction of vivax malaria in a temperate area (Moscow region, Russia): a geographic investigation. Malar J. 2020;19:1–20. https://doi.org/10.1186/s12936-020-03187-8.

Article  Google Scholar 

Thomson MC, Stanberry LR. Climate Change and Vectorborne Diseases. N Engl J Med 2022;387:1969–78. https://doi.org/10.1056/nejmra2200092. Excellent review on possible effects of climate change on the epidemiology of vectorborne infections.

Shah MP, Hwang J, Choi L, Lindblade KA, Kachur SP, Desai M. Mass drug administration for malaria. Cochrane Database Syst Rev 2021;2021. https://doi.org/10.1002/14651858.CD008846.pub3.

The Global Fund. Results Report 2021. (accessed 5–1–23). https://www.theglobalfund.org/media/11304/corporate_2021resultsreport_report_en.pdf.

Tatem AJ, Jia P, Ordanovich D, Falkner M, Huang Z, Howes R, et al. The geography of imported malaria to non-endemic countries: a meta-analysis of nationally reported statistics. Lancet Infect Dis. 2017;17:98–107. https://doi.org/10.1016/S1473-3099(16)30326-7.

Article  PubMed  PubMed Central  Google Scholar 

Mace KE, Lucchi NW, Tan KR. Malaria Surveillance — United States, 2018. MMWR Surveill Summ 2022;71:1–29. https://doi.org/10.15585/mmwr.ss7108a1.

European Centre for Disease Prevention and Control. Surveillance Atlas of Infectious Diseases. Malaria (accessed 4–1–23). https://atlas.ecdc.europa.eu/public/index.aspx?Dataset=27&HealthTopic=3.

De Laval F, Maugey N, Bonet D’Oleon A, Pommier De Santi V, Ficko C. Increased risk of severe malaria in travellers during the COVID-19 pandemic. J Travel Med 2021;28:1–2. https://doi.org/10.1093/jtm/taab106.

Schubert L, Thurnher PMM, Machold PK, Tobudic PS, Winkler PS. Pandemic-related delay of falciparum malaria diagnosis in a traveller leading to cerebral malaria. J Travel Med. 2021;28:1–2. https://doi.org/10.1093/jtm/taab159.

Article  Google Scholar 

Wilairatana P, Masangkay FR, Kotepui KU, Milanez GDJ, Kotepui M. Prevalence and characteristics of malaria among covid-19 individuals: a systematic review, meta-analysis, and analysis of case reports. PLoS Negl Trop Dis. 2021;15:1–18. https://doi.org/10.1371/journal.pntd.0009766.

Article  CAS  Google Scholar 

European Centre for Disease Prevention and Control. Multiple reports of locally-acquired malaria infections in the EU – 20 September 2017. Stockholm: ECDC; 2017. (accessed 5–1–23). https://www.ecdc.europa.eu/sites/default/files/documents/RRA-Malaria-EU-revised-September-2017_0.pdf.

Van Bortel W, Van Den Poel B, Hermans G, Driessche M Vanden, Molzahn H, Deblauwe I, et al. Two fatal autochthonous cases of airport malaria, Belgium, 2020. Eurosurveillance 2022;27. https://doi.org/10.2807/1560-7917.ES.2022.27.17.2100411.

Coppée R, Sarrasin V, Zaffaroulah R, Bouzayene A, Thellier M, Noël H, et al. Nosocomial malaria transmissions resolved by genomic analyses—a retrospective case report study in France: 2007–2021. Clin Infect Dis. 2022. https://doi.org/10.1093/cid/ciac813.

Article  PubMed  Google Scholar 

Coppée R, Bailly J, Sarrasin V, Vianou B, Zinsou BE, Mazars E, et al. Circulation of an artemisinin-resistant malaria lineage in a traveler returning from East Africa to France. Clin Infect Dis. 2022;75:1242–4. https://doi.org/10.1093/cid/ciac162.

Article  PubMed  Google Scholar 

Corbacho-Loarte MD, Crespillo-Andújar C, Chamorro-Tojeiro S, Norman F, Pérez-Molina JA, Martín O, et al. Screening of imported malaria infection in asymptomatic migrants from Sub-Saharan Africa: a retrospective analysis of a 2010–2019 cohort. Travel Med Infect Dis 2022;49:102411. https://doi.org/10.1016/j.tmaid.2022.102411.

Whittaker C, Slater H, Nash R, Bousema T, Drakeley C, Ghani AC, et al. Global patterns of submicroscopic Plasmodium falciparum malaria infection: insights from a systematic review and meta-analysis of population surveys. The Lancet Microbe. 2021;2:e366–74. https://doi.org/10.1016/S2666-5247(21)00055-0.

Article  PubMed  PubMed Central  Google Scholar 

Barrado L, Ezpeleta C, Rubio JM, Martín C, Azcona JM, Arteaga M, et al. Source identification of autochthonous-introduced Plasmodium vivax Malaria. Spain Infection. 2017;45:111–4. https://doi.org/10.1007/s15010-016-0941-8.

Article  PubMed  Google Scholar 

Santa-Olalla Peralta P, Vazquez-Torres MC, Latorre-Fandos E, Mairal-Claver P, Cortina-Solano P, Puy-Azón A, et al. First autochthonous malaria case due to Plasmodium vivax since eradication, Spain, 2010. Euro Surveill. 2010;15:19684. https://doi.org/10.2807/ese.15.41.19684-en.

Article  CAS  PubMed  Google Scholar 

World Health Organization. WHO Guidelines for malaria -. Who. 2022;2022:1–396.

Google Scholar 

Poti KE, Sullivan DJ, Dondorp AM, Woodrow CJ. HRP2: transforming malaria diagnosis, but with caveats. Trends Parasitol. 2020;36:112–26. https://doi.org/10.1016/j.pt.2019.12.004.

Article  PubMed  Google Scholar 

Marquart L, Butterworth A, McCarthy JS, Gatton ML. Modelling the dynamics of Plasmodium falciparum histidine-rich protein 2 in human malaria to better understand malaria rapid diagnostic test performance. Malar J. 2012;11:1–9. https://doi.org/10.1186/1475-2875-11-74.

Article  CAS  Google Scholar 

Gamboa D, Ho MF, Bendezu J, Torres K, Chiodini PL, Barnwell JW, et al. A large proportion of P. falciparum isolates in the Amazon region of Peru lack pfhrp2 and pfhrp3: implications for malaria rapid diagnostic tests. PLoS One 2010;5. https://doi.org/10.1371/journal.pone.0008091.

Berzosa P, González V, Taravillo L, Mayor A, Romay-Barja M, Garciá L, et al. First evidence of the deletion in the pfhrp2 and pfhrp3 genes in Plasmodium falciparum from Equatorial Guinea. Malar J. 2020;19:1–9. https://doi.org/10.1186/s12936-020-03178-9.

Article  CAS  Google Scholar 

Gupta H, Matambisso G, Galatas B, Cisteró P, Nhamussua L, Simone W, et al. Molecular surveillance of pfhrp2 and pfhrp3 deletions in Plasmodium falciparum isolates from Mozambique. Malar J. 2017;16:1–7. https://doi.org/10.1186/s12936-017-2061-z.

Article  CAS  Google Scholar 

WHO. From malaria control to malaria elimination: a manual for elimination scenario planning. Who 2014;52:67.

Berhane A, Anderson K, Mihreteab S, Gresty K, Rogier E, Mohamed S, et al. Major threat to malaria control programs by plasmodium falciparum lacking histidine-rich protein 2. Eritrea Emerg Infect Dis. 2018;24:462–70. https://doi.org/10.3201/eid2403.171723.

Article  CAS  PubMed  Google Scholar 

Korenromp EL, Williams BG, Gouws E, Dye C, Snow RW. Measurement of trends in childhood malaria mortality in Africa: an assessment of progress toward targets based on verbal autopsy. Lancet Infect Dis. 2003;3:349–58. https://doi.org/10.1016/S1473-3099(03)00657-1.

Article  PubMed  Google Scholar 

Kavishe RA, Paulo P, Kaaya RD, Kalinga A, Van Zwetselaar M, Chilongola J, et al. Surveillance of artemether-lumefantrine associated Plasmodium falciparum multidrug resistance protein-1 gene polymorphisms in Tanzania. Malar J. 2014;13:1–6. https://doi.org/10.1186/1475-2875-13-264.

Article  CAS  Google Scholar 

Mandoko PN, Rouvier F, Kakina LM, Mbongi DM, Latour C, Likwela JL, et al. Prevalence of plasmodium falciparum parasites resistant to sulfadoxine/pyrimethamine in the democratic republic of the congo: emergence of highly resistant PfdHFR/PfdHps alleles. J Antimicrob Chemother. 2018;73:2704–15. https://doi.org/10.1093/jac/dky258.

Article  CAS  Google Scholar 

Naidoo I, Roper C. Mapping ‘partially resistant’, ‘fully resistant’, and ‘super resistant’ malaria. Trends Parasitol. 2013;29:505–15. https://doi.org/10.1016/j.pt.2013.08.002.

Article  PubMed  Google Scholar 

Berzosa P, Molina de la Fuente I, Ta-Tang TH, González V, García L, Rodríguez-Galet A, et al. Temporal evolution of the resistance genotypes of Plasmodium falciparum in isolates from Equatorial Guinea during 20 years (1999 to 2019). Malar J 2021;20:1–17. https://doi.org/10.1186/s12936-021-04000-w.

WHO. Strategy for malaria elimination in the Greater Mekong Subregion : 2015–2030 [Internet]. Manila : WHO Regional Ofce for the Western Pacif2015. https://apps.who.int/iris/handle/10665/208203. Accessed 16 Jun 2021.

World Health Organization. Status report on artemisinin resistance and ACT efficacy (August 2018). World Heal Organ 2018:10.

Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5. https://doi.org/10.1038/nature12876.

Article  CAS  PubMed  Google Scholar 

Menard D, Ariey F. PCR_sequencing for genotyping SNPs PF3D7_1343700 Kelch protein propeller domain. Protocol Exchange. 2013; Accessed 16 February 2023. https://protocols.scienceexchange.com/protocols/pcr_sequencing-for-genotyping-snps-pf3d7_1343700-kelch-protein-propeller-domain.

Silva-Pinto A, Domingos J, Cardoso M, Reis A, Benavente ED, Caldas JP, et al. Artemether-lumefantrine treatment failure of uncomplicated Plasmodium falciparum malaria in travellers coming from Angola and Mozambique. Int J Infect Dis. 2021;110:151–4. https://doi.org/10.1016/j.ijid.2021.07.008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barry A, Issiaka D, Traore T, Mahamar A, Diarra B, Sagara I, et al. Optimal mode for delivery of seasonal malaria chemoprevention in Ouelessebougou, Mali: A cluster randomized trial. PLoS ONE. 2018;13:1–11. https://doi.org/10.1371/journal.pone.0193296.

Article  CAS  Google Scholar 

Bigira V, Kapisi J, Clark TD, Kinara S, Mwangwa F, Muhindo MK, et al. Protective efficacy and safety of three antimalarial regimens for the prevention of malaria in young Ugandan children: a randomized controlled trial. PLoS Med 2015;11. https://doi.org/10.1371/journal.pmed.1001689.

Clarke SE, Jukes MC, Njagi JK, Khasakhala L, Cundill B, Otido J, et al. Effect of intermittent preventive treatment of malaria on health and education in schoolchildren: a cluster-randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:127–38. https://doi.org/10.1016/S0140-6736(08)61034-X.

Article  PubMed  PubMed Central  Google Scholar 

Kwambai TK, Dhabangi A, Idro R, Opoka R, Watson V, Kariuki S, et al. Malaria chemoprevention in the postdischarge management of severe anemia. N Engl J Med. 2020;383:2242–54. https://doi.org/10.1056/nejmoa2002820.

Article  CAS  PubMed  PubMed Central  Google Scholar 

World Health Organization. Mass drug administration for falciparum malaria. 2017.

Nadia J, Lu F. Historical experiences on mass drug administration for malaria control and elimination, its challenges and China’s experience: a narrative review. Acta Trop 2022;225:106209. https://doi.org/10.1016/j.actatropica.2021.106209.

Newby G, Hwang J, Koita K, Chen I, Greenwood B, Von Seidlein L, et al. Review of mass drug administration for malaria and its operational challenges. Am J Trop Med Hyg. 2015;93:125–34. https://doi.org/10.4269/ajtmh.14-0254.

Article  PubMed  PubMed Central  Google Scholar 

Eisele TP. Mass drug administration can be a valuable addition to the malaria elimination toolbox. Malar J. 2019;18:1–5. https://doi.org/10.1186/s12936-019-2906-8.

Article  Google Scholar 

Aregawi M, Smith SJ, Sillah-Kanu M, Seppeh J, Kamara ARY, Williams RO, et al. Impact of the mass drug administration for malaria in response to the Ebola outbreak in Sierra Leone. Malar J. 2016;15:1–13. https://doi.org/10.1186/s12936-016-1493-1.

Article  CAS  Google Scholar 

Kuehne A, Tiffany A, Lasry E, Janssens M, Besse C, Okonta C, et al. Impact and lessons learned from mass drug administrations of malaria chemoprevention during the ebola outbreak in Monrovia, Liberia, 2014. PLoS ONE. 2016;11:1–17. https://doi.org/10.1371/journal.pone.0161311.

Article  CAS  Google Scholar 

A Phase 3 Trial of RTS,S/AS01 Malaria Vaccine in African Infants. N Engl J Med 2012;367:2284–95. https://doi.org/10.1056/nejmoa1208394.

Olotu A, Fegan G, Wambua J, Nyangweso G, Awuondo KO, Leach A, et al. Four-year efficacy of RTS, S/AS01E and its interaction with malaria exposure. N Engl J Med. 2013;368:1111–20. https://doi.org/10.1056/nejmoa1207564.

Article  CAS  PubMed  PubMed Central  Google S

Comments (0)

No login
gif