National Institute on Drug Abuse (NIDA), National Institute on Drug Abuse (NIDA). (2021). Overdose death rates. https://www.drugabuse.gov/drug-topics/trends-statistics/overdose-death-rates. Accessed from 15 Mar 2021.
Brandt L, Chao T, Comer SD, Levin FR. Pharmacotherapeutic strategies for treating cocaine use disorder—what do we have to offer? Addiction. 2021;116(4):694–710. https://doi.org/10.1111/add.15242.
Nordfjærn T. Relapse patterns among patients with substance use disorders. J Subst Use. 2011;16(4):313–29. https://doi.org/10.3109/14659890903580482.
Shalev U. Neurobiology of Relapse to Heroin and Cocaine seeking: a review. Pharmacol Rev. 2002;54(1):1–42. https://doi.org/10.1124/pr.54.1.1.
Article CAS PubMed Google Scholar
Aguilar MA, Rodríguez-Arias M, Miñarro J. Neurobiological mechanisms of the reinstatement of drug-conditioned place preference. Brain Res Rev. 2009;59(2):253–77. https://doi.org/10.1016/j.brainresrev.2008.08.002.
Farrell MR, Schoch H, Mahler SV. Modeling cocaine relapse in rodents: behavioral considerations and circuit mechanisms. Prog Neuropsychopharmacol Biol Psychiatry. 2018;87:33–47. https://doi.org/10.1016/j.pnpbp.2018.01.002.
Article CAS PubMed PubMed Central Google Scholar
Di Chiara G. A motivational learning hypothesis of the role of mesolimbic dopamine in compulsive drug use. J Psychopharmacol. 1998;12(1):54–67. https://doi.org/10.1177/026988119801200108.
Wolf ME. Synaptic mechanisms underlying persistent cocaine craving. Nat Rev Neurosci. 2016;17(6):351–65. https://doi.org/10.1038/nrn.2016.39.
Article CAS PubMed PubMed Central Google Scholar
Shaham Y, Shalev U, Lu L, de Wit H, Stewart J. The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology. 2003;168(1–2):3–20. https://doi.org/10.1007/s00213-002-1224-x.
Article CAS PubMed Google Scholar
Covey DP, Mateo Y, Sulzer D, Cheer JF, Lovinger DM. Endocannabinoid modulation of dopamine neurotransmission. Neuropharmacology. 2017;124:52–61. https://doi.org/10.1016/j.neuropharm.2017.04.033.
Article CAS PubMed PubMed Central Google Scholar
Lupica CR, Riegel AC. Endocannabinoid release from midbrain dopamine neurons: a potential substrate for cannabinoid receptor antagonist treatment of addiction. Neuropharmacology. 2005;48(8):1105–16. https://doi.org/10.1016/j.neuropharm.2005.03.016.
Article CAS PubMed Google Scholar
Maldonado C, Rodríguez-Arias M, Castillo A, Aguilar MA, Miñarro J. Gamma-hydroxybutyric acid affects the acquisition and reinstatement of cocaine-induced conditioned place preference in mice. Behav Pharmacol. 2006;17(2):119–31. https://doi.org/10.1097/01.fbp.0000190685.84984.ec.
Article CAS PubMed Google Scholar
Maldonado R, Valverde O, Berrendero F. Involvement of the endocannabinoid system in drug addiction. Trends Neurosci. 2006;29(4):225–32. https://doi.org/10.1016/j.tins.2006.01.008.
Article CAS PubMed Google Scholar
De Vries TJ, Shaham Y, Homberg JR, Crombag H, Schuurman K, Dieben J, Vanderschuren LJMJ, Schoffelmeer AN M. A cannabinoid mechanism in relapse to cocaine seeking. Nat Med. 2001;7(10):1151–4. https://doi.org/10.1038/nm1001-1151.
Article CAS PubMed Google Scholar
Luján M, Alegre-Zurano L, Martín-Sánchez A, Cantacorps L, Valverde O. CB1 receptor antagonist AM4113 reverts the effects of cannabidiol on cue and stress-induced reinstatement of cocaine-seeking behaviour in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2022;113:110462. https://doi.org/10.1016/j.pnpbp.2021.110462.
Article CAS PubMed Google Scholar
Carey AN, Borozny K, Aldrich JV, McLaughlin JP. Reinstatement of cocaine place-conditioning prevented by the peptide kappa-opioid receptor antagonist arodyn. Eur J Pharmacol. 2007;569(1–2):84–9. https://doi.org/10.1016/j.ejphar.2007.05.007.
Article CAS PubMed PubMed Central Google Scholar
Redila VA, Chavkin C. Stress-induced reinstatement of cocaine seeking is mediated by the kappa opioid system. Psychopharmacology. 2008;200(1):59–70. https://doi.org/10.1007/s00213-008-1122-y.
Article CAS PubMed PubMed Central Google Scholar
Orio L, Alen F, Pavón FJ, Serrano A, García-Bueno B. Oleoylethanolamide, neuroinflammation, and alcohol abuse. Front Mol Neurosci. 2019;11:490. https://doi.org/10.3389/fnmol.2018.00490.
Article CAS PubMed PubMed Central Google Scholar
Sagheddu C, Torres LH, Marcourakis T, Pistis M. Endocannabinoid-like lipid neuromodulators in the regulation of dopamine signaling: relevance for drug addiction. Front Synaptic Neurosci. 2020;12:588660. https://doi.org/10.3389/fnsyn.2020.588660.
Article CAS PubMed PubMed Central Google Scholar
Bowen KJ, Kris-Etherton PM, Shearer GC, West SG, Reddivari L, Jones PJH. Oleic acid-derived oleoylethanolamide: a nutritional science perspective. Prog Lipid Res. 2017;67:1–15. https://doi.org/10.1016/j.plipres.2017.04.001.
Article CAS PubMed Google Scholar
Mennella I, Boudry G, Val-Laillet D. Ethanolamine produced from oleoylethanolamide degradation contributes to acetylcholine/dopamine balance modulating eating behavior. J Nutr. 2019;149(3):362–5. https://doi.org/10.1093/jn/nxy281.
Almási R, Szőke É, Bölcskei K, Varga A, Riedl Z, Sándor Z, Szolcsányi J, Pethő G. Actions of 3-methyl-N-oleoyldopamine, 4-methyl-N-oleoyldopamine and N-oleoylethanolamide on the rat TRPV1 receptor in vitro and in vivo. Life Sci. 2008;82(11–12):644–51. https://doi.org/10.1016/j.lfs.2007.12.022.
Article CAS PubMed Google Scholar
Wang X, Miyares RL, Ahern GP. Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short-term food intake in mice via capsaicin receptor TRPV1: OEA activates vagal capsaicin receptors. J Physiol. 2005;564(2):541–7. https://doi.org/10.1113/jphysiol.2004.081844.
Article CAS PubMed PubMed Central Google Scholar
Fuchs RA, Evans KA, Ledford CC, Parker MP, Case JM, Mehta RH, See RE. The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology. 2005;30(2):296–309. https://doi.org/10.1038/sj.npp.1300579.
Article CAS PubMed Google Scholar
Knackstedt LA, Trantham-Davidson HL, Schwendt M. The role of ventral and dorsal striatum mGluR5 in relapse to cocaine-seeking and extinction learning: MGluR5 and cocaine-seeking. Addict Biol. 2014;19(1):87–101. https://doi.org/10.1111/adb.12061.
Article CAS PubMed Google Scholar
McHugh MJ, Demers CH, Braud J, Briggs R, Adinoff B, Stein EA. Striatal-insula circuits in cocaine addiction: implications for impulsivity and relapse risk. Am J Drug Alcohol Abus. 2013;39(6):424–32. https://doi.org/10.3109/00952990.2013.847446.
Vorel SR, Liu X, Hayes RJ, Spector JA, Gardner EL. Relapse to cocaine-seeking after hippocampal theta burst stimulation. Science. 2001;292(5519):1175–8. https://doi.org/10.1126/science.1058043.
Article CAS PubMed Google Scholar
Jin P, Yu H-L, Tian-Lan, Zhang F, Quan Z-S. Antidepressant-like effects of oleoylethanolamide in a mouse model of chronic unpredictable mild stress. Pharmacol Biochem Behav. 2015;133:146–54. https://doi.org/10.1016/j.pbb.2015.04.001.
Article CAS PubMed Google Scholar
Lo Verme J, Fu J, Astarita G, La Rana G, Russo R, Calignano A, Piomelli D. The Nuclear receptor peroxisome proliferator-activated Receptor-α mediates the anti-inflammatory actions of Palmitoylethanolamide. Mol Pharmacol. 2005;67(1):15–9. https://doi.org/10.1124/mol.104.006353.
Article CAS PubMed Google Scholar
Thabuis C, Tissot-Favre D, Bezelgues J-B, Martin J-C, Cruz-Hernandez C, Dionisi F, Destaillats F. Biological Functions and Metabolism of Oleoylethanolamide. Lipids. 2008;43(10):887–94. https://doi.org/10.1007/s11745-008-3217-y.
Article CAS PubMed Google Scholar
Bilbao A, Blanco E, Luque-Rojas MJ, Suárez J, Palomino A, Vida M, Araos P, Bermúdez-Silva J, Fernández-Espejo E, Spanagel R, de Rodríguez F. Oleoylethanolamide dose-dependently attenuates cocaine-induced behaviours through a PPARα receptor-independent mechanism. Addict Biol. 2013;18(1):78–87. https://doi.org/10.1111/adb.12006.
Article CAS PubMed Google Scholar
González-Portilla M, Moya M, Montagud-Romero S, Rodríguez de Fonseca F, Orio L, Rodriguez-Arias M. Oleoylethanolamide attenuates the stress-induced conditioned rewarding properties of cocaine by modulating cerebellar TLR4 signaling pathway. Manuscript submitted for publication; 2022.
Bystrowska B, Frankowska M, Smaga I, Niedzielska-Andres E, Pomierny-Chamioło L, Filip M. Cocaine-Induced reinstatement of Cocaine seeking provokes changes in the endocannabinoid and N-Acylethanolamine levels in rat brain structures. Molecules. 2019;24(6):1125. https://doi.org/10.3390/molecules24061125.
Article CAS PubMed PubMed Central Google Scholar
Bystrowska B, Smaga I, Frankowska M, Filip M. Changes in endocannabinoid and N-acylethanolamine levels in rat brain structures following cocaine self-administration and extinction training. Prog Neuropsychopharmacol Biol Psychiatry. 2014;50:1–10. https://doi.org/10.1016/j.pnpbp.2013.12.002.
Article CAS PubMed Google Scholar
de Fonseca R, Navarro F, Gómez M, Escuredo R, Nava L, Fu F, Murillo-Rodríguez J, Giuffrida E, LoVerme A, Gaetani J, Kathuria S, Gall S, C., Piomelli D. An anorexic lipid mediator regulated by feeding. Nature. 2001;414(6860):209–12. https://doi.org/10.1038/35102582.
Comments (0)