Identification of crucial genes involved in thyroid cancer development

McDow AD, Pitt SC. Extent of surgery for low-risk differentiated thyroid cancer. Surg Clin. 2019;99(4):599–610.

Google Scholar 

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.

Henley SJ, Ward EM, Scott S, Ma J, Anderson RN, Firth AU, Thomas CC, Islami F, Weir HK, Lewis DR, Sherman RL, Wu M, Benard VB, Richardson LC, Jemal A, Cronin K, Kohler BA. Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer. 2020;126(10):2225–49.

Article  PubMed  Google Scholar 

Furukawa K, Preston D, Funamoto S, Yonehara S, Ito M, Tokuoka S, Sugiyama H, Soda M, Ozasa K, Mabuchi K. Long-term trend of thyroid cancer risk among Japanese atomic-bomb survivors: 60 years after exposure. Int J Cancer. 2013;132(5):1222–6.

Article  CAS  PubMed  Google Scholar 

Bhatti P, Veiga LH, Ronckers CM, Sigurdson AJ, Stovall M, Smith SA, Weathers R, Leisenring W, Mertens AC, Hammond S, Friedman DL. Risk of second primary thyroid cancer after radiotherapy for a childhood cancer in a large cohort study: an update from the childhood cancer survivor study. Radiat Res. 2010;174(6a):741–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sushmitha S, Murugesan R, Saraswathi S, Rathiusha K, Madhumala G, Jose S, Laura B, Antara B, Francesco M, Surajit P. A review on role of ATM gene in hereditary transfer of colorectal cancer. Acta Bio Med. 2018;89(4):463.

Google Scholar 

Sharma U, Jagannathan NR. Magnetic resonance imaging (MRI) and MR spectroscopic methods in understanding breast cancer biology and metabolism. Metabolites. 2022;12(4):295.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shah JP. Thyroid carcinoma: epidemiology, histology, and diagnosis. Clin Adv Hematol Oncol. 2015;13(4 Suppl 4):3.

PubMed  PubMed Central  Google Scholar 

Kumar V, Abbas AK, Fausto N, Aster JC. Robbins and Cotran pathologic basis of disease, professional edition ebook. Elsevier health sciences. 2014.

Pizzato M, Li M, Vignat J, Laversanne M, Singh D, La Vecchia C, Vaccarella S. The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates for incidence and mortality rates in 2020. Lancet Diabetes Endocrinol. 2022;10(4):264–72.

Article  PubMed  Google Scholar 

Srivastava KC, Austin RD, Shrivastava D, Sethupathy S, Rajesh S. A case control study to evaluate oxidative stress in plasma samples of oral malignancy. Contemp Clin Dent. 2012;3(3):271.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bílek R, Dvořáková M, Grimmichová T, Jiskra J. Iodine, thyroglobulin and thyroid gland. Physiol Res. 2020;69(Suppl 2):S225–36.

Article  PubMed  PubMed Central  Google Scholar 

Hsiao SJ, Nikiforov YE. Molecular approaches to thyroid cancer diagnosis. Endocr Relat Cancer. 2014;21(5):T301.

CAS  PubMed  PubMed Central  Google Scholar 

Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36(6):320–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soares-Silva M, Diniz FF, Gomes GN, Bahia D. The mitogen-activated protein kinase (MAPK) pathway: role in immune evasion by trypanosomatids. Front Microbiol. 2016;7:183.

Article  PubMed  PubMed Central  Google Scholar 

López-Camarillo C, Ocampo EA, Casamichana ML, Pérez-Plasencia C, Alvarez-Sánchez E, Marchat LA. Protein kinases and transcription factors activation in response to UV-radiation of skin: implications for carcinogenesis. Int J Mol Sci. 2012;13(1):142–72.

Article  PubMed  Google Scholar 

Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926–45.

Article  CAS  PubMed  Google Scholar 

Moritz A, Li Y, Guo A, Villén J, Wang Y, MacNeill J, Kornhauser J, Sprott K, Zhou J, Possemato A, Ren JM. Akt–RSK–S6 kinase signaling networks activated by oncogenic receptor tyrosine kinases. Sci Signal. 2010;3(136):ra64.

Kilfoy BA, Devesa SS, Ward MH, Zhang Y, Rosenberg PS, Holford TR, Anderson WF. Gender is an age-specific effect modifier for papillary cancers of the thyroid gland. Cancer Epidemiol Biomark Prev. 2009;18(4):1092–100.

Article  Google Scholar 

Toniato A, Bernardi C, Piotto A, Rubello D, Pelizzo MR. Features of papillary thyroid carcinoma in patients older than 75 years. Updat Surg. 2011;63:115–8.

Article  Google Scholar 

Chrisoulidou A, Boudina M, Tzemailas A, Doumala E, Iliadou PK, Patakiouta F, Pazaitou-Panayiotou K. Histological subtype is the most important determinant of survival in metastatic papillary thyroid cancer. Thyroid Res. 2011;4(1):1–5.

Article  Google Scholar 

Gesing A, Lewiński A, Karbownik-Lewińska M. The thyroid gland and the process of aging; what is new? Thyroid Res. 2012;5(1):1–5.

Article  Google Scholar 

Ries LA, Melbert D, Krapcho M, Stinchcomb DG, Howlader N, Horner MJ, Mariotto A, Miller BA, Feuer EJ, Altekruse SF, Lewis DR. SEER cancer statistics review, 1975–2005. Bethesda: National Cancer Institute; 2008. online.

Google Scholar 

Lee K, Anastasopoulou C, Chandran C, Cassaro S. Thyroid cancer. InStatPearls: StatPearls Publishing; 2021.

Google Scholar 

Waguespack S, Wells S, Ross J, Bleyer A, et al. Thyroid cancer. In: Bleyer A, O’Leary M, Barr R, et al., editors. Cancer epidemiology in older adolescents and young adults 15 to 29 years of age, including SEER incidence and survival 1975–2000. Bethesda: National Cancer Institute; 2006. p. 143–54.

Google Scholar 

Kosary C. Cancer of the Thyroid, in Ries LAG YJ, Keel GE, Eisner MP, Lin YD, Horner MJ (eds): SEER survival monograph: cancer survival among adults: U.S. SEER PROGRAM, 1988–2001, patient and tumor characteristics. Bethesda: National Cancer Institute, 2007, pp 217–226.

Blackburn BE, Ganz PA, Rowe K, Snyder J, Wan Y, Deshmukh V, Newman M, Fraser A, Smith K, Herget K, Kim J. Aging-related disease risks among young thyroid cancer survivorsaging-related disease risks among thyroid cancer survivors. Cancer Epidemiol Biomark Prev. 2017;26(12):1695–704.

Article  Google Scholar 

Roman S, Lin R, Sosa JA. Prognosis of medullary thyroid carcinoma: demographic, clinical, and pathologic predictors of survival in 1252 cases. Cancer. 2006;107(9):2134–42.

Kim TY, Kim KW, Jung TS, Kim JM, Kim SW, Chung KW, Kim EY, Gong G, Oh YL, Cho SY, Yi KH. Prognostic factors for Korean patients with anaplastic thyroid carcinoma. Head Neck. 2007;29(8):765–72.

Article  PubMed  Google Scholar 

Kebebew E, Ituarte PH, Siperstein AE, Duh QY, Clark OH. Medullary thyroid carcinoma: clinical characteristics, treatment, prognostic factors, and a comparison of staging systems. Cancer. 2000;88(5):1139–48.

Article  CAS  PubMed  Google Scholar 

Rukhman N, Silverberg A. Thyroid cancer in older men. Aging Male. 2011;14(2):91–8.

Article  PubMed  Google Scholar 

Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM. Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. JAMA. 2017;317(13):1338–48.

Article  PubMed  PubMed Central  Google Scholar 

Haymart MR. Understanding the relationship between age and thyroid cancer. Oncologist. 2009;14(3):216–21.

Article  PubMed  Google Scholar 

Faggiano A, Coulot J, Bellon N, Talbot M, Caillou B, Ricard M, Bidart JM, Schlumberger M. Age-dependent variation of follicular size and expression of iodine transporters in human thyroid tissue. J Nucl Med. 2004;45(2):232–7.

CAS  PubMed  Google Scholar 

Iglesias ML, Schmidt A, Ghuzlan AA, Lacroix L, Vathaire FD, Chevillard S, Schlumberger M. Radiation exposure and thyroid cancer: a review. Arch Endocrinol Metab. 2017;61:180–7.

Article  PubMed  PubMed Central  Google Scholar 

Mihailovic J, Nikoletic K, Srbovan D. Recurrent disease in juvenile differentiated thyroid carcinoma: prognostic factors, treatments, and outcomes. J Nucl Med. 2014;55(5):710–7.

Article  PubMed  Google Scholar 

Shah S, Boucai L. Effect of age on response to therapy and mortality in patients with thyroid cancer at high risk of recurrence. J Clin Endocrinol Metab. 2018;103(2):689–97.

Article  PubMed  Google Scholar 

Liu R, Bishop J, Zhu G, Zhang T, Ladenson PW, Xing M. Mortality risk stratification by combining BRAF V600E and TERT promoter mutations in papillary thyroid cancer: genetic duet of BRAF and TERT promoter mutations in thyroid cancer mortality. JAMA Oncol. 2017;3(2):202–8.

Article  PubMed  Google Scholar 

Shen X, Zhu G, Liu R, Viola D, Elisei R, Puxeddu E, Fugazzola L, Colombo C, Jarzab B, Czarniecka A, Lam AK. Patient age–associated mortality risk is differentiated by BRAF V600E status in papillary thyroid cancer. J Clin Oncol. 2018;36(5):438.

Article  CAS  PubMed  Google Scholar 

Melo M, da Rocha AG, Vinagre J, Batista R, Peixoto J, Tavares C, Celestino R, Almeida A, Salgado C, Eloy C, Castro P. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab. 2014;99(5):E754–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nikiforov YE. Role of molecular markers in thyroid nodule management: then and now. Endocr Pract. 2017;23(8):979–89.

Article  PubMed  Google Scholar 

Haymart MR. Is BRAF V600E mutation the explanation for age-associated mortality risk in patients with papillary thyroid cancer? J Clin Oncol. 2017;36(5):433–4.

Article  PubMed  Google Scholar 

Silver JA, Bogatchenko M, Pusztaszeri M, Forest VI, Hier MP, Yang JW, Tamilia M, Payne RJ. BRAF V600E mutation is associated with aggressive features in papillary thyroid carcinomas≤ 1.5 cm. J Otolaryngol Head Neck Surg. 2021;50:1–8.

Song YS, Jung CK, Jung KC, Park YJ, Won JK. Rare manifestations of anaplastic thyroid carcinoma: the role of BRAF mutation analysis. J Korean Med Sci. 2017;32(10):1721–6.

Article  PubMed  PubMed Central  Google Scholar 

Liu C, Chen T, Liu Z. Associations between BRAFV600E and prognostic factors and poor outcomes in papillary thyroid carcinoma: a meta-analysis. World J Surg Oncol. 2016;14(1):1–2.

Article  CAS 

留言 (0)

沒有登入
gif