Underexplored reciprocity between genome-wide methylation status and long non-coding RNA expression reflected in breast cancer research: potential impacts for the disease management in the framework of 3P medicine

International Agency for Research on Cancer (IARC). The GLOBOCAN 2020. https://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

Article  PubMed  Google Scholar 

Domingo Bretón M, Allué Cabañuz M, Castán Villanueva N, Arribas Del Amo MD, Gil Romea I, Güemes SA. CBCRisk model to determine the risk of contralateral breast cancer in sporadic breast cancer. Cir Esp (Engl Ed). 2021;99:724–9. https://doi.org/10.1016/j.cireng.2021.10.008.

Article  PubMed  Google Scholar 

Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-an updated review. Cancers (Basel). 2021;13:4287. https://doi.org/10.3390/cancers13174287.

Article  CAS  PubMed  Google Scholar 

Smolarz B, Zadrożna-Nowak A, Romanowicz H. The role of lncRNA in the development of tumors, including breast cancer. Int J Mol Sci. 2021;22:8427. https://doi.org/10.3390/ijms22168427.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kong D, Hughes CJ, Ford HL. Cellular plasticity in breast cancer progression and therapy. Front Mol Biosci. 2020;7:72. https://doi.org/10.3389/fmolb.2020.00072.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Golubnitschaja O, Debald M, Yeghiazaryan K, Kuhn W, Pešta M, Costigliola V, et al. Breast cancer epidemic in the early 21st century: evaluation of risk factors, cumulative questionnaires, and recommendations for preventive measures. Tumor Biol. 2016;37:12941–57. https://doi.org/10.1007/s13277-016-5168-x.

Article  Google Scholar 

Mazurakova A, Koklesova L, Samec M, Kudela E, Kajo K, Skuciova V, et al. Anti-breast cancer effects of phytochemicals: primary, secondary, and tertiary care. EPMA J. 2022;13:315–34. https://doi.org/10.1007/s13167-022-00277-2.

Article  PubMed  PubMed Central  Google Scholar 

Wang W, Yan Y, Guo Z, Hou H, Garcia M, Tan X, et al. All around suboptimal health A joint position paper of the Suboptimal Health Study Consortium and European Association for Predictive. Prevent Personal Med EPMA J. 2021;12:1–31. https://doi.org/10.1007/s13167-021-00253-2.

Article  Google Scholar 

Grixti JM, Ayers D. Long noncoding RNAs and their link to cancer. Noncoding RNA Res. 2020;5:77–82. https://doi.org/10.1016/j.ncrna.2020.04.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sideris N, Dama P, Bayraktar S, Stiff T, Castellano L. LncRNAs in breast cancer: a link to future approaches. Cancer Gene Ther. 2022;29:1866–77. https://doi.org/10.1038/s41417-022-00487-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maldonado V, Melendez-Zajgla J. The role of hypoxia-associated long non-coding RNAs in breast cancer. Cells. 2022;11:1679. https://doi.org/10.3390/cells11101679.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin H, Du W, Huang W, Yan J, Tang Q, Chen Y, Zou Z. lncRNA and breast cancer: progress from identifying mechanisms to challenges and opportunities of clinical treatment. Mol Ther Nucleic Acids. 2021;25:613–37. https://doi.org/10.1016/j.omtn.2021.08.005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alpizar-Reyes B, Barrera-Tamariz MR, Contreras-Gómora I, Munguia-Arriaga MA, Ávila-Avilés RD. Relationship of lncRNA to breast cancer. J Cancer Immunol. 2020;2:22–34. https://doi.org/10.33696/cancerimmunol.2.010.

Article  Google Scholar 

Du T, Shi Y, Xu S, Wan X, Sun H, Liu B. Long non-coding RNAs in drug resistance of breast cancer. Onco Targets Ther. 2020;13:7075–87. https://doi.org/10.2147/OTT.S255226.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu L, Zhang Y, Lu J. The roles of long noncoding RNAs in breast cancer metastasis. Cell Death Dis. 2020;11:749. https://doi.org/10.1038/s41419-020-02954-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma W, Zhao F, Yu X, Guan S, Suo H, Tao Z, et al. Immune-related lncRNAs as predictors of survival in breast cancer: a prognostic signature. J Transl Med. 2020;18:442. https://doi.org/10.1186/s12967-020-02522-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kapinova A, Kubatka P, Zubor P, Golubnitschaja O, Dankova Z, Uramova S, et al. The hypoxia-responsive long non-coding RNAs may impact on the tumor biology and subsequent management of breast cancer. Biomed Pharmacother. 2018;99:51–8. https://doi.org/10.1016/j.biopha.2017.12.104.

Article  CAS  PubMed  Google Scholar 

Huang W, Kong F, Li R, Chen X, Wang K. Emerging roles of m6A RNA methylation regulators in gynecological cancer. Front Oncol. 2020a;12:827956. https://doi.org/10.3389/fonc.2022.827956.

Article  Google Scholar 

Huang W, Li H, Yu Q, Xiao W, Wang DO. LncRNA-mediated DNA methylation: an emerging mechanism in cancer and beyond. J Exp Clin Cancer Res. 2022b;41:100. https://doi.org/10.1186/s13046-022-02319-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bin X, Hongjian Y, Xiping Z, Bo C, Shifeng Y, Binbin T. Research progresses in roles of LncRNA and its relationships with breast cancer. Cancer Cell Int. 2018;18:179. https://doi.org/10.1186/s12935-018-0674-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koirala P, Zou DH, Mo YY. Long non-coding RNAs as key regulators of cancer metastasis. J Cancer Metastasis Treat. 2016;2:1–10. https://doi.org/10.4103/2394-4722.171829.

Article  CAS  Google Scholar 

De Rosa S, Iaconetti C, Eyileten C, Yasuda M, Albanese M, Polimeni A, et al. Flow-responsive noncoding RNAs in the vascular system: basic mechanisms for the clinician. J Clin Med. 2022;11:459. https://doi.org/10.3390/jcm11020459.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Micallef I, Baron B. The mechanistic roles of ncRNAs in promoting and supporting chemoresistance of colorectal cancer. Noncoding RNA. 2021;7:24. https://doi.org/10.3390/ncrna7020024.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Venkatesh J, Wasson MD, Brown JM, Fernando W, Marcato P. LncRNA-miRNA axes in breast cancer: novel points of interaction for strategic attack. Cancer Lett. 2021;509:81–8. https://doi.org/10.1016/j.canlet.2021.04.002.

Article  CAS  PubMed  Google Scholar 

Amin N, McGrath A, Chen Y-PP. Evaluation of deep learning in non-coding RNA classification. Nat Mach Intell. 2019;1:246–56. https://doi.org/10.1038/s42256-019-0051-2.

Article  Google Scholar 

Bao Z, Yang Z, Huang Z, Zhou Y, Cui Q, Dong D. LncRNADisease 2.0: an updated database of long non-coding RNA-associated diseases. Nucleic Acids Res. 2019;47:D1034–7. https://doi.org/10.1093/nar/gky905.

Article  CAS  PubMed  Google Scholar 

Dahariya S, Paddibhatla I, Kumar S, Raghuwanshi S, Pallepati A, Gutti RK. Long non-coding RNA: classification, biogenesis and functions in blood cells. Mol Immunol. 2019;112:82–92. https://doi.org/10.1016/j.molimm.2019.04.011.

Article  CAS  PubMed  Google Scholar 

Pecero ML, Salvador-Bofill J, Molina-Pinelo S. Long non-coding RNAs as monitoring tools and therapeutic targets in breast cancer. Cell Oncol (Dordr). 2019;42:1–12. https://doi.org/10.1007/s13402-018-0412-6.

Article  CAS  PubMed  Google Scholar 

Richard JLC, Eichhorn PJA. Deciphering the roles of lncRNAs in breast development and disease. Oncotarget. 2018;9:20179–212. https://doi.org/10.18632/oncotarget.24591.

Article  PubMed  PubMed Central  Google Scholar 

Ferlita A, Battaglia R, Andronico F, Caruso S, Cianci A, Purrello M, et al. Non-coding RNAs in endometrial physiopathology. Int J Mol Sci. 2018;19:2120. https://doi.org/10.3390/ijms19072120.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Srijyothi L, Ponne S, Prathama T, Ashok C, Baluchamy S. Roles of non-coding RNAs in transcriptional regulation. Open access peer-reviewed chapter in the book - Transcriptional and Post-transcriptional Regulation, Edited by Kais Ghedira. 2018; https://doi.org/10.5772/intechopen.76125.

Jiang P, Rao EY, Meng N, Zhao Y, Wang JJ. MicroRNA-17-92 significantly enhances radioresistance in human mantle cell lymphoma cells. Radiat Oncol. 2010;5:100. https://doi.org/10.1186/1748-717X-5-100.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rao E, Jiang C, Ji M, Huang X, Iqbal J, Lenz G, et al. The miRNA-17 approximately 92 cluster mediates chemoresistance and enhances tumor growth in mantle cell lymphoma via PI3K/AKT pathway activation. Leukemia. 2012;26:1064–72. https://doi.org/10.1038/leu.2011.305.

Article  CAS  PubMed  Google Scholar 

Czubak K, Lewandowska MA, Klonowska K, Roszkowski K, Kowalewski J, Figlerowicz M, Kozlowski P. High copy number variation of cancer-related microRNA genes and frequent amplification of DICER1 and DROSHA in lung cancer. Oncotarget. 2015;6:23399–416.

Article  PubMed  PubMed Central  Google Scholar 

Dong XY, Guo P, Boyd J, Sun X, Li Q, Zhou W, Dong JT. Implication of snoRNA U50 in human breast cancer. J Genet Genomics. 2009;36:447–54. https://doi.org/10.1016/S1673-8527(08)60134-4.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif