Post-2000 nonlinear optical materials and measurements: data tables and best practices

III–V semiconductors AlN SiO2 Silicon FWM0.376 mmFigure 1(c) 3.5 μm 0.65 μm Figure 7(v) — Sputtering — — —— 1555 nm — — Figure 1(a) —5.0 × 10−1 W CW TE — 1.3 × 10−12 m2—— — — — — 2.3 × 10−19 m2 W−1— — — — [Jung2013]Al0.12Ga0.88As SiO2 Sapphire FWM0.81 mm— 0.44 μm 0.3 μm — — MOVPE E-beam Wafer bonding, substrate removal —1.2 dB cm−1 1550 nm — — — 1566 nm3.8 × 10−4 W CW TE — — 1564 nm— CW — — — —— — −19.8 dBg — [Zheng2019a] The device is a racetrack resonator, with 17 μm-radius curved waveguide and 700 μm-long straight waveguide parts. Al0.18Ga0.82As Al0.65Ga0.35As and Al0.35Ga0.65As GaAs (100) FWM1 mmFigure 1 0.9 μm 0.8 μm — Monocrystalline— E-beam — —2 dB cm−1 1520 nm — 1.0 × 10−24 s2 m−1 Figure 5 1470–1540 nm— 3.0 × 10−12 s(FWHM) TE 7.7 × 10+7 Hz 1.4 × 10−12 m21540–1560 nm2.8 × 10−2 W CW TE — — —— 5.1 × 10+1 m−1W−1 15.8%h 3.2 × 10+12 Hz (at −20 dB) [Espinosa2021a]The length of the 900 nm-wide part is 1 mm, but the total length is 5.26 mm, which includes the 2 μm-wide couplers. Conversion efficiency dependence on pump-probe detuning shown in figure 9 of the reference paper. Al0.18Ga0.82AsAl0.65Ga0.35As GaAs [100] FWM2 mmFigure 1 0.6 μm 1.4 μm — Monocrystalline— E-beam — —40 dB cm−1 1520 nm — −7.5 × 10−25 s2 m−1 Figure 5 1470–1540 nm— 3.0 × 10−12 s(FWHM) TE 7.7 × 10+7 Hz 3.2 × 10−13 m21540–1560 nm2.8 × 10−2 W CW TE — — —— 1.8 × 10+2 m−1W−1 31.6%h 3.8 × 10+12 Hz (at −20 dB) [Espinosa2021a]The length of the 600 nm-wide part is 2 mm, but the total length is 5.33 mm, which includes the 2 μm-wide couplers. Conversion efficiency dependence on pump-probe detuning shown in figure 9 of the reference paper. Al0.18Ga0.82AsAl0.65Ga0.35As GaAs [100] FWM1 mmFigure 1 0.8 μm 0.7 μm Figure 7(f) Monocrystalline— E-beam — —7 dB cm−1 1520 nm — 1.5 × 10−24 s2 m−1 Figure 5 1470–1540 nm— 3.0 × 10−12 s(FWHM) TE 7.7 × 10+7 Hz 7.3 × 10−13 m21540–1560 nm2.8 × 10−2 W CW TE — — —— 9.0 × 10+1 m−1W−1 12.6%h — [Espinosa2021a]The length of the 800 nm wide part is 1 mm, but the total length is 5.87 mm, which includes the 2 μm-wide couplers. Conversion efficiency dependence on pump-probe detuning is shown in figure 9 of the reference paper. Al0.18Ga0.82As Al0.7Ga0.3As GaAs FWM25 mm Figure 1 1.2 μm 1.7 μm — Monocrystalline MBE Photolithography — — 1.9 dB cm−1 1550 nm 1.64 eV 9.0 × 10−25 s2 m−1 — 1550.5 nm 8.0 × 10−1 W CW TE — 7.3 × 10−13 m21551.9 nm — CW TE — — 1.1 × 10−17 m2 W−1 5.0 × 10−13 m W−1 — 10%f — [Apiratikul2014] Conversion efficiency dependence on pump power is shown in figure 4 of the reference paper. Al0.18Ga0.82AsAl0.7Ga0.3As GaAs FWM25 mm Figure 1 1.35 μm 1.7 μm — MonocrystallineMBE Photolithography Reflown resist —0.56 dB cm−1 1550 nm 1.64 eV 9.0 × 10−25 s2 m−1 Figure 6 1550.5 nm8.0 × 10−1 W CW TE — 8.2 × 10−13 m21551.9 nm— CW TE — — 7.0 × 10−18 m2 W−13.0 × 10−13 m W−1 — 22.9%f — [Apiratikul2014]Photoresist reflow was used to achieve smoother sidewalls. Al0.18Ga0.82AsAl0.7Ga0.3As GaAs FWM5 mmFigure 1 0.69 μm 1.7 μm — MonocrystallineMBE Photolithography — —— 1550 nm 1.64 eV 2.2 × 10−25 s2 m−1 Figure 6 1550.5 nm8.0 × 10−1 W CW TE — 4.4 × 10−13 m21551.9 nm— CW TE — — —— — 0.16%f 8.0 × 10+12 Hz (at −3 dB) [Apiratikul2014]Uncoated. Al0.18Ga0.82AsAl0.7Ga0.3As GaAs FWM5 mmFigure 1 0.69 μm 1.7 μm figure 7(e) MonocrystallineMBE Photolithography — —— 1550 nm 1.64 eV 4.4 × 10−25 s2 m−1 Figure 6 1550.5 nm8.0 × 10−1 W CW TE — 4.7 × 10−13 m21551.9 nm— CW TE — — —— — 0.25%f 5.5 × 10+12 Hz (at −3 dB) [Apiratikul2014]Coated with SiNx. Al0.20Ga0.80AsAl0.50Ga0.50As and Al0.24Ga0.76As GaAs Nonlinear transm./refl.10 mmFigure 1 2 μm 1.2 μm — MonocrystallineMOCVD E-beam, photolithography — —3.2 dB cm−1 1550 nm — 1.2 × 10−24 s2 m−1 — 1550 nm1.5 × 10+2 W 2.0 × 10−12 s(FWHM) — 3.6 × 10+7 Hz 4.4 × 10−12 m2—— — — — — —— — — — [Dolgaleva2011]3PA coefficient = 8 × 10−26 m3 W−2 at 1550 nm. Al0.21Ga0.79AsSiO2 and HSQ SOI FWM9 mmFigure 1 0.63 μm 0.29 μm — —Epitaxy, PECVD E-beam Wafer bonding —1.5 dB cm−1 1549.5 nm 1.69 eV 250 ps (nm·km)−1 figure 3 1549.5 nm1.1 × 10−1 W CW TE — — —— — — — — —— — −12 dBi 55 nm (at −3 dB) [Ros2017]Conversion efficiency dependence on length, pump power and signal—pump spacing shown in figure 5 of the reference paper. Al0.23Ga0.77AsAl0.7Ga0.3As and SiNx GaAs FWM10.8 mmFigure 1 0.2–1 μm 2.1 μm — Monocrystalline— Projection lithography — —5.1 dB cm−1 1550 nm — — — 1538–1563 nm1.2 × 10−1 W CW TM — 6.2 × 10−13 m21565 nm3.2 × 10−2 W CW TM — — —— — 0.2%j 1.0 × 10+12 Hz (at −3 dB) [Mahmood2014]Conversion efficiency dependence on pump—probe detuning shown in figure 2 of the reference paper. Al0.26Ga0.74As PhCAir — SRS Pump Probe1 mm— — — — Monocrystalline— — — —9.1 cm−1 1606 nm — — — 1550 nm4.4 W 5.0 × 10−12 s TE 2.0 × 10+7 Hz — 1605.8 nm2.8 × 10−4 W CW TE — — —— — — — — [Oda2008]gRaman: 5.1 × 10−11 m W−1 Raman shift: 2.85 × 10+4 m−1 Linewidth: 3.6 × 10+2 m−1 The lattice constant, thickness, and hole diameter are 452, 260, and 120 nm, respectively. Al0.32Ga0.68AsAir Silicon SPM/XPM spectral broadening4 mmFigures 1(a) and (b) 0.48 μm 0.54 μm Figure 7(h) MonocrystallineEpitaxy E-beam Wafer bonding —0.45 dB cm−1 2400 nm 1.82 eV 20 ps (nm·km)−1 Figures 4(c) and 5(c) 1560 nm— 6.1 × 10−14 s TE 1.6 × 10+8 Hz 2.2 × 10−13 m2—— — — — — —— — — 1200 nm (at −20 dB) [Chiles2019]The reported bandwidth is for the supercontinuum generation (from 1100 nm to 2300 nm). Supercontinuum generation bandwidth dependence on pulse energy shown in figure 4(a) of the reference paper. Al0.32Ga0.68AsAir Silicon SPM/XPM spectral broadening2.3 mmFigures 1(a) and (b) 2.15 μm 0.54 μm Figure 7(h) MonocrystallineEpitaxy E-beam Wafer bonding —0.45 dB cm−1 2400 nm 1.82 eV 20 ps (nm·km)−1 Figures 4(c) and 5(c) 3060 nm— 8.5 × 10−14 s TE 1.0 × 10+8 Hz 1.2 × 10−12 m2—— — — — — —— — — 4200 nm (at −20 dB) [Chiles2019]The reported bandwidth is for the supercontinuum generation (from 2300 nm to 6500 nm). Supercontinuum generation bandwidth dependence on pulse energy shown in figure 5(a) of the reference paper. AlGaAsAl0.7Ga0.3As GaAs FWM10 mmFigures 1 and 2 — — Figure 7(d) Monocrystalline— — — —1.5 dB cm−1 1550 nm 1.6 eV 1.1 × 10−24 s2 m−1 — 1552.45 nm1.0 × 10−1 W CW TE — — 1551.9 nm— CW TE — — 2.3 × 10−17 m2 W−13.3 × 10−11 m W−1 — 1.6%f — [Wathen2014]The 2PA coefficient was measured at 1550 nm by the nonlinear transmittance technique with: Pulse width: 1.26 × 10−12 s Rep. rate: 1 × 10+7 Hz Peak irradiance: <3.5 × 10+13 W m−2AlGaAsAl0.7Ga0.3As GaAs FWM10 mmFigures 1 and 2 — — Figure 7(d) Monocrystalline— — — —0.74 dB cm−1 1550 nm 1.66 eV — — 1552.45 nm1.0 × 10−1 W CW TE — — 1551.9 nm— CW TE — — 1.5 × 10−17 m2 W−1— — 0.6%f — [Wathen2014]3PA coefficient = 8.3 × 10−26 m3 W−2 at 1550 nm, measured by nonlinear transmittance with: Pulse width: 1.26 × 10−12 s Rep. rate: 1 × 10+7 Hz Peak irradiance <8 × 10+13 W m−2AlGaAsAl0.7Ga0.3As GaAs FWM25 mmFigures 1 and 2 — — Figure 7(d) Monocrystalline— — —0.56 dB cm−1 1550 nm 1.77 eV — — 1552.45 nm1.0 × 10−1 W CW TE — — 1551.9 nm— CW TE — — 9.0 × 10−18 m2 W−1— — 22.9%f 1.6 × 10+12 Hz (at −3 dB) [Wathen2014]— AlGaAsAl0.7Ga0.3As GaAs FWM5 mmFigures 1 and 2 — — Figure 7(d) Monocrystalline— — — —3 dB cm−1 1550 CW 1.79 eV 4.5 × 10−25 s2 m−1 — 1552.45 nm1.0 × 10−1 W CW TE — — 1551.9 nm— — TE — — 8.5 × 10−18 m2 W−1— — 0.4%f 5.5 × 10+12 Hz (at −3 dB) [Wathen2014]AlGaAsSiO2 and HSQ SOI FWM3 mmFigure 1(c) 0.465 μm 0.29 μm Figure 7(g) —MOVPE, PECVD E-beam Wafer bonding, substrate removal —2 dB cm−1 1545 nm — — — 1543.6 nm— CW TE — — 1538.2 nm— CW TE — — —— 7.2 × 10+2 m−1W−1 −16 dB 130 nm (at −3 dB) [Stassen2019]The nonlinear coefficient was measured on a straight waveguide device, while the FWM efficiency was measured on a microring. The conversion bandwidth is the same for the waveguide and microring. AlGaAsSiO2 and HSQ SOI FWM3 mmFigure 1(b) 0.64 μm 0.28 μm — —MOVPE, PECVD E-beam Wafer bonding, Substrate removal 3.31.3 dB cm−1 — — 46 ps (nm·km)−1 — 1550 nm4.0 × 10−1 W CW TE — — 1549 nm1.0 × 10−4 W CW TE — — —— 6.3 × 10+2 m−1W−1 −4.2 dB 750 nm (at −3 dB) [Pu2018]AlGaAsSiO2 and HSQ SOI FWM9 mm— — — — —MOVPE, PECVD E-beam Wafer bonding, Substrate removal —8 dB cm−1 — — 164 ps (nm·km)−1 — 1550 nm1.6 × 10−1 W CW TE — — 1545 nm— CW TE — — —— 3.5 × 10+2 m−1W−1 −15 dB — [Kaminski2019]Conversion efficiency dependence on signal wavelength shown in figure 4 of the reference paper. The authors also reported a conversion efficiency of −23 dB for a 3 mm-long waveguide. AlGaAsSiO2 and HSQ SOI SPM/XPM spectral broadening5 mmFigure 1(b) 0.6 μm 0.28 μm — —Epitaxy, PECVD E-beam Wafer bonding, Substrate removal —1.5 dB cm−1 1542 nm — — Figure S1 1542 nm5.6 W 1.5 × 10−12 s(FWHM) TE 1.0 × 10+10 Hz — —— — — — — —— — 66%k 44 nm (at −20 dB) [Hu2018]The generated comb wavelength ranges from 1520 nm to 1539.8 nm, and from 1546.1 nm to 1570 nm, as informed in the supplementary material. GaAs/Al0.85Ga0.15As superlattice Al0.56Ga0.44As and Al0.60Ga0.40As GaAs SPM/XPM spectral broadening5.7 mm— 3 μm 1 μm — MonocrystallineMBE — — —0.65 cm−1 1550 nm — — — 1545 nm4.0 × 10+2 W 2 × 10−12 s(FWHM) TE, TM 7.6 × 10+7 Hz 4.5 × 10−12 m2—— — — — — 7.5 × 10−18 m2 W−1— — — — [Wagner2009]Nonlinearities dependence on wavelength shown in figure 3 of the reference paper. GaAs/AlAs superlatticeAl0.56Ga0.44As and Al0.60Ga0.40As GaAs SPM/XPM spectral broadening12 mmFigure 1 3 μm 0.8 μm — MonocrystallineMBE Photolithography — —0.25 cm−1 1500–1600 nm — 1.0 × 10−24 s2 m−1 — 1545 nm3.0 × 10+2 W 2 × 10−12 s(FWHM) TE 7.6 × 10+7 Hz 9.7–11.2 × 10−12 m2—— — — — — 3.2 × 10−17 m2 W−12.0 × 10−11 m W−1 — — — [Wagner2007]Nonlinearities dependence on wavelength shown in figures 2, 5, 8 and 10 of the reference paper. GaAs/AlAs superlatticeAl0.56Ga0.44As and Al0.60Ga0.40As GaAs SPM/XPM spectral broadening12 mmFigure 1 3 μm 0.8 μm — MonocrystallineMBE Photolithography — —0.7 cm−1 1500–1600 nm — — — 1545 nm3.0 × 10+2 W 2 × 10−12 s(FWHM) TM 7.6 × 10+7 Hz 16–24 × 10−12 m2—— — — — — 1.7 × 10−17 m2 W−11.0 × 10−11 m W−1 — — — [Wagner2007]Nonlinearities dependence on wavelength shown in figures 2, 5, 8 and 10 of the reference paper. In0.53Ga0.47As/AlAs0.56Sb0.44 CDQW — InP SPM/XPM spectral broadening0.25 mmFigure 1 3 μm — — —— — — —— — — — — 1560 nm— 2.0 × 10−12 s TM 1.0 × 10+10 Hz — 1360 nm— CW TE — — —— — — — [Cong2008]XPM efficiency = 2.0 × 1011 rad J−1. See the reference paper for quantum well layers thicknesses. InGaAs/AlAs/AlAsSb CDQWInAlAs and InP InP SPM/XPM spectral broadening0.24 mm— — — — —— — — —278 cm−1 1600 nm — — Figure 2 1550 nm— 7.0 × 10−13 s TM 8.0 × 10+7 Hz — 1539.67 nm— CW TE — — —— — — — — [Lim2010]XPM efficiency = 5.2 × 1010 rad J−1 See the reference paper for quantum well layers thicknesses. Isat = 19 J m−2InGaAs/AlAs/AlAsSb CDQWInAlAs — SPM/XPM spectral broadening0.24 mm— 2 μm — — —— — — —— — — — — 1550.1 nm— 2.3 × 10−12 s TM 1.0 × 10+10 Hz — 1559.9 nm— CW TE — — —— — — — [Tsuchida2007]XPM efficiency = 4.9 × 1011 rad J−1 See the reference paper for quantum well layers thicknesses. InGaAs/AlAsSb CDQWAlGaAsSb and InP InP SPM/XPM spectral broadening0.25 mmFigure 1(b) 2 μm — — —— — — —400 cm−1 1560 nm — — Figures 2(d) and (e) 1560 nm— 2.0 × 10−12 s TM 1.0 × 10+10 Hz — 1541 nm— CW TE — — —— — — — [Cong2009]XPM efficiency = 3.3 × 1011 rad J−1 See the reference paper for quantum well layers thicknesses. XPM efficiency dependence on doping density shown in figure 2(c) of the reference paper InGaAs/AlAsSb CDQWInP InP SPM/XPM spectral broadening1 mm— 1.3 μm — — —MBE E-beam — —— — — — — 1560 nm— 2.4 × 10−12 s TM 1.0 × 10+10 Hz — 1545 nm— CW TE — — —— — — — [Feng2013]XPM efficiency = 9.3 × 1011 rad J−1 The experimental setup and the waveguide fabrication details given in Feng et al [Feng2012]. GaPSiO2 Silicon FWM0.314 mmFigure 2(d) 0.5 μm 0.3 μm Figure 7(k) MonocrystallineMOCVD — Wafer bonding 3.11.2 dB cm−1 1560 nm 2.1 eV — Figure 2(e) 1560 nm— CW — — 1.5 × 10−13 m2—— — — — — 1.1 × 10−17 m2 W−1— 2.4 × 10+2 m−1W−1 — — [Wilson2020]InGaPSiO2 — SPM/XPM spectral broadening1.3 mmFigure 1(a) — — Figure 7(j) —— — — 3.1310 dB cm−1 1544 nm 1.9 eV −1.1 × 10−21 s2 m−1 Figure 1(b) 1551 nm— 3.2 × 10−12 s(FWHM) — 2.2 × 10+7 Hz — —— — — — — —— 9.2 × 10+2 m−1W−1 — — [Colman2010]The GVD in the table is for 1555 nm. InGaPSiO2 Silicon FWM2 mmFigure 1 0.63 μm 0.25 μm Figure 7(i) —MOCVD E-beam Wafer bonding —12 dB cm−1 1540 nm 1.9 eV −5.0 × 10−25 s2 m−1 figure 2 1552.4 nm3.8 × 10−2 W CW TE — 2.4 × 10−13 m21551.1 nm1.5 × 10−3 W CW TE — 2.4 × 10−13 m2—— 4.8 × 10+2 m−1W−1 0.08%f — [Dave2015a]3PA coefficient = 2.5 × 10−26 m3 W−2InGaPSiO2 Silicon SPM/XPM spectral broadening2 mmFigures 1 and 3 0.7 μm 0.25 μm — —MOCVD E-beam Wafer bonding —12 dB cm−1 1550 nm — −6.0 × 10−25 s2 m−1 figure 1 1550 nm1.1 × 10+1 W 1.7 × 10−13 s(FWHM) TE 8.2 × 10+7 Hz 2.1 × 10−13 m2—— — — — — —— — — 1.6 × 10+14 Hz (at −30 dB) [Dave2015b]Supercontinuum generation bandwidth dependence on waveguide width shown in figure 2 of the reference paper. In0.63Ga0.37As0.8P0.2InP InP FWM8 mmFigure 1 1.7 μm 0.9 μm — MonocrystallineMOCVD E-beam — 3.43 dB cm−1 1568 nm — 2.2 × 10−23 s2 m−1 — 1568 nm9.0 W 3.0 × 10−12 s TM 7.6 × 10+7 Hz 1.1 × 10−12 m21551 nm5.0 × 10−1 W CW TM — — 1.0 × 10−17 m2 W−1— — 0.001%f 5.5 × 10+12 Hz [Saeidi2018]Conversion bandwidth calculated as the maximum signal-to-idler wavelength separation In0.63Ga0.37As0.8P0.2InP InP Nonlinear transm./refl.8 mmFigure 1 1.7 μm 0.9 μm — MonocrystallineMOCVD E-beam — 3.43 dB cm−1 1568 nm — 2.2 × 10−23 s2 m−1 — 1568 nm4.8 × 10+1 W 3.0 × 10−12 s TM 7.6 × 10+7 Hz 1.1 × 10−12 m2—— — — — —1.90 × 10−10 m W−1 — — — — [Saeidi2018]InGaAsP QWInP InP FWM10 mm— — — — Monocrystalline— — — —— — 0.83 eV — — 1548 nm2.5 × 10−2 W CW — — — 10-nm shift— CW — — — —— — 0.16% — [Thoen2000]10 nm-thick InGaAsP quantum wells with 15 nm InP barriers centered in InGaAsP guiding layer Silicon and silicon carbide, nitride, and oxide a-SiSiO2 Silicon FWM18.3 mm— 0.48 μm 0.225 μm — —PECVD E-beam — 3.396 dB cm−1 1550 nm — — — 1602 nm2.3 × 10−1 W CW TE — — 1-nm shift— CW — — — 1.5 × 10−17 m2 W−1— — 3.39%

留言 (0)

沒有登入
gif