Mutational signatures for breast cancer diagnosis using artificial intelligence

Johnson RH, Anders CK, Litton JK, Ruddy KJ, Bleyer A. Breast cancer in adolescents and young adults. Pediatr Blood Cancer. 2018;65(12):e27397. https://doi.org/10.1002/PBC.27397.

Article  PubMed  Google Scholar 

Mehdy MM, Ng PY, Shair EF, Md Saleh NI, Gomes C. Review article artificial neural networks in image processing for early detection of breast cancer; 2017. https://doi.org/10.1155/2017/2610628.

Book  Google Scholar 

Ibrahim A, Gamble P, Jaroensri R, Abdelsamea MM, Mermel CH, et al. Artificial intelligence in digital breast pathology: techniques and applications. Breast Off J Eur Soc Mastol. 2020;49:267. https://doi.org/10.1016/J.BREAST.2019.12.007.

Article  Google Scholar 

Van Hoeck A, Tjoonk NH, Van Boxtel R, Cuppen E. Portrait of a cancer: mutational signature analyses for cancer diagnostics. BMC Cancer. 2019;19(1) https://doi.org/10.1186/S12885-019-5677-2.

Reeves RA, Kaufman T. Mammography. Med Imaging Princ Pract. 2022:1–22. https://doi.org/10.1201/b12939.

Budh DP, Sapra A. Breast cancer screening. StatPearls; 2022. Accessed: Nov. 22, 2022. Available: https://www.ncbi.nlm.nih.gov/books/NBK556050/

Google Scholar 

Ou-Yang F, Tsai IH, Tang JY, Yen CY, Bin Cheng Y, et al. Correction: antiproliferation for breast cancer cells by ethyl acetate extract of Nepenthes thorelii x (ventricosa x maxima) (Int. J. Mol. Sci. 2019, 20, 3238). Int J Mol Sci. 2021;22(2):1–3. https://doi.org/10.3390/IJMS22020668.

Article  Google Scholar 

Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J. Medical applications of infrared thermography: a review. Infrared Phys. Technol. 2012;55(4):221. https://doi.org/10.1016/J.INFRARED.2012.03.007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buechel M, Herzog TJ, Westin SN, Coleman RL, Monk BJ, et al. Treatment of patients with recurrent epithelial ovarian cancer for whom platinum is still an option. Ann. Oncol. 2019;30(5):721–32. https://doi.org/10.1093/ANNONC/MDZ104.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Subramaniam S, Li F, Szilagyi A, J. Yang yangjl, geneiscn Jianming Li, et al. Identifying breast cancer-related genes based on a novel computational framework involving KEGG pathways and PPI network modularity. Front Genet. 2021;1:596794. https://doi.org/10.3389/fgene.2021.596794. www.frontiersin.org

Article  CAS  Google Scholar 

Vazquez M, de la Torre V, Valencia A. Chapter 14: Cancer genome analysis. PLoS Comput Biol. 2012;8(12) https://doi.org/10.1371/JOURNAL.PCBI.1002824.

Ulaner GA, Riedl CC, Dickler MN, Jhaveri K, Pandit-Taskar N, et al. Molecular imaging of biomarkers in breast cancer. J. Nucl. Med. 2016;57(Suppl 1):53S. https://doi.org/10.2967/JNUMED.115.157909.

Article  CAS  PubMed  Google Scholar 

Sävendahl L. Hormonal regulation of growth plate cartilage. Horm Res. 2005;64(SUPPL. 2):94–7. https://doi.org/10.1159/000087764.

Article  CAS  PubMed  Google Scholar 

Cheskis BJ, Greger JG, Nagpal S, Freedman LP. Signaling by estrogens. J Cell Physiol. 2007;213(3):610–7. https://doi.org/10.1002/jcp.21253.

Article  CAS  PubMed  Google Scholar 

Gavalas NG, Liontos M, Trachana SP, Bagratuni T, Arapinis C, et al. Angiogenesis-related pathways in the pathogenesis of ovarian cancer. Int J Mol Sci. 2013;14(8):15885–909. https://doi.org/10.3390/ijms140815885.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iqbal MJ, Javed Z, Sadia H, Qureshi IA, Irshad A, et al. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future. Cancer Cell Int. 2021;21(1) https://doi.org/10.1186/S12935-021-01981-1.

Penson A, Camacho N, Zheng Y, … A. V.-J., and U. 2020, “Development of genome-derived tumor type prediction to inform clinical cancer care,” jamanetwork.com, Accessed: Apr. 02, 2022. Available: https://jamanetwork.com/journals/jamaoncology/article-abstract/2755639

Book  Google Scholar 

Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578(7793):94–101. https://doi.org/10.1038/s41586-020-1943-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Loos S, Irving G, Szegedy C, Kaliszyk C. Deep network guided proof search. 2018;46:85–63. https://doi.org/10.29007/8mwc.

Y. B. G. H. Y LeCun. Deep learning. Nature. 2015;521:436–44.

Article  Google Scholar 

Reddy S. Use of Artificial Intelligence in Healthcare Delivery. eHealth: Mak Heal Care Smarter. 2018. https://doi.org/10.5772/intechopen.74714.

Hassan Ahmed S and Khan M. Role of artificial intelligence in medical imaging.

Mehdipour P. Cancer genetics and psychotherapy; 2017.

Book  Google Scholar 

Iqbal M, Javed Z, … H. S.-C. cell, and undefined 2021. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future. cancerci.biomedcentral.com, Accessed: Apr. 02, 2022. Available: https://cancerci.biomedcentral.com/articles/10.1186/s12935-021-01981-1.

Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446(7132):153–8. https://doi.org/10.1038/NATURE05610.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sheth D, Giger ML. Artificial intelligence in the interpretation of breast cancer on MRI. J Magn Reson Imaging. 2020;51(5):1310–24. https://doi.org/10.1002/jmri.26878.

Article  PubMed  Google Scholar 

Ece Solmaz A, Yeniay L, Gökmen E, Zekioğlu O, Haydaroğlu A, et al. Clinical contribution of next-generation sequencing multigene panel testing for BRCA negative high-risk patients with breast cancer. Clin Breast Cancer. 2021;21(6):e647–53. https://doi.org/10.1016/J.CLBC.2021.04.002.

Article  CAS  PubMed  Google Scholar 

Gulhan D, Lee J, Melloni G, … I. C.-C.-N., and U. 2019. Detecting the mutational signature of homologous recombination deficiency in clinical samples. nature.com. Accessed: Apr. 02, 2022. Available: https://www.nature.com/articles/s41588-019-0390-2.

Otasek D, Morris JH, Bouças J, Pico AR, Demchak B. Cytoscape automation: empowering workflow-based network analysis. Genome Biol. 2019;20(1) https://doi.org/10.1186/S13059-019-1758-4.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models. Genome Res. 1971;13(22):426. https://doi.org/10.1101/gr.1239303.metabolite.

Article  Google Scholar 

Zhang S, Xu Y, Hui X, Yang F, Hu Y, et al. Improvement in prediction of prostate cancer prognosis with somatic mutational signatures. ncbi.nlm.nih.gov, Accessed: Apr. 02, 2022. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/pmc5665042/.

Zhang S, Xu Y, Hui X, Yang F, Hu Y, et al. Improvement in prediction of prostate cancer prognosis with somatic mutational signatures. J. Cancer. 2017;8(16):3261–7. https://doi.org/10.7150/JCA.21261.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Menor M, Zhu Y, Wang Y, Zhang J, Jiang B, et al. Development of somatic mutation signatures for risk stratification and prognosis in lung and colorectal adenocarcinomas. BMC Med. Genomics. 2019;12(1):63–79. https://doi.org/10.1186/S12920-018-0454-7/FIGURES/7.

Article  Google Scholar 

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13. https://doi.org/10.1093/NAR/GKY1131.

Article  CAS  PubMed  Google Scholar 

Lachmann A, Schilder BM, Wojciechowicz ML, Torre D, Kuleshov MV, et al. Geneshot: search engine for ranking genes from arbitrary text queries. Nucleic Acids Res. 2019;47(W1):W571–7. https://doi.org/10.1093/NAR/GKZ393.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang H, Robinson PN, Wang K. Phenolyzer: phenotype-based prioritization of candidate genes for human diseases. Nat Methods. 2015;12(9):841–3. Accessed: Apr. 09, 2022. Available: https://www.nature.com/articles/nmeth.3484

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bouaziz J, Mashiach R, Cohen S, Kedem A, Baron A, et al. How artificial intelligence can improve our understanding of the genes associated with endometriosis: natural language processing of the pubmed database. Biomed Res Int. 2018;2018. https://doi.org/10.1155/2018/6217812.

Mansouri A, Wei W, Alessandrini J-M, Mandin C, Blondeau P. Impact of climate change on indoor air quality: a review. Int J Environ Res Public Health. 2022;19(23) https://doi.org/10.3390/ijerph192315616.

Wei CH, Kao HY. Cross-species gene normalization by species inference. BMC Bioinformatics. 2011;12(Suppl 8):S5. https://doi.org/10.1186/1471-2105-12-S8-S5.

Article  PubMed  PubMed Central  Google Scholar 

Schärer OD. Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol. 2013;5(10) https://doi.org/10.1101/CSHPERSPECT.A012609.

Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21(16):3448–9. https://doi.org/10.1093/BIOINFORMATICS/BTI551.

Article  CAS  PubMed  Google Scholar 

Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, et al. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8(9):1–16. https://doi.org/10.1186/GB-2007-8-9-R183/TABLES/3.

Article  CAS  Google Scholar 

Zhang Y, Xiang J, Tang L, Li J, Lu Q, et al. Identifying breast cancer-related genes based on a novel computational framework involving KEGG pathways and PPI network modularity. Front Genet. 2021;12:596794. https://doi.org/10.3389/FGENE.2021.596794/FULL.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu JH, Wu Z, Sun R, Nie SP, Meng HY, et al. Using mRNAsi to identify prognostic-related genes in endometrial carcinoma based on WGCNA. Life Sci. 2020;258 https://doi.org/10.1016/J.LFS.2020.118231.

Craign NL, Green R, Greider CW, Storz, et al . Principles of Genome Function, vol 2014, 2nd ed. Oxford University Press. 2014. ISBN 0198719957, 9780198719953, p. 983.

Metcalfe N, Metcalfe KA, Narod SA. Breast cancer prevention in women with a BRCA1 or BRCA2 mutation. Open Med. 2007;1(3):e184 Accessed 27 April 2022. Available: /pmc/articles/PMC3113226/.

PubMed  PubMed Central  Google Scholar 

Russell NS, Wilkinson KD. Identification of a novel 29-linked polyubiquitin binding protein, Ufd3, using polyubiquitin chain analogues. Biochemistry. 2004;43(16):4844–54. https://doi.org/10.1021/BI035626R.

Article  CAS  PubMed  Google Scholar 

Sawyer SL, Tian L, Kähkönen M, Schwartzentruber J, Kircher M, et al. Biallelic mutations in BRCA1 cause a new Fanconi anemia subtype. Cancer Discov. 2015;5(2):135–42. https://doi.org/10.1158/2159-8290.CD-14-1156.

Article  CAS  PubMed  Google Scholar 

He W, Shi F, Zhou ZW, Li B, Zhang K, et al. A bioinformatic and mechanistic study elicits the antifibrotic effect of ursolic acid through the attenuation of oxidative stress with the involvement of ERK, PI3K/Akt, and p38 MAPK signaling pathways in human hepatic stellate cells and rat liver. Drug Des Devel Ther. 2015;9:3989. https://doi.org/10.2147/DDDT.S85426.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brresen-Dale AL. TP53 and breast cancer. https://doi.org/10.1002/humu.10174.

Cai Z, Chehab NH, Pavletich NP. Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase. Mol. Cell. 2009;35(6):818–29. https://doi.org/10.1016/j.molcel.2009.09.007.

留言 (0)

沒有登入
gif