Multiplex Analysis of Cerebrospinal Fluid and Serum Exosomes MicroRNAs of Untreated Relapsing Remitting Multiple Sclerosis (RRMS) and Proposing Noninvasive Diagnostic Biomarkers

Abe, M., & Bonini, N. M. (2013). MicroRNAs and neurodegeneration: Role and impact. Trends in Cell Biology, 23(1), 30–36. https://doi.org/10.1016/j.tcb.2012.08.013

Article  CAS  PubMed  Google Scholar 

Abolghasemi, M., Ali Ashrafi, S., Asadi, M., Shanehbandi, D., Sadigh Etehad, S., Poursaei, E., & Shaafi, S. (2023). MicroRNAs expression in peripheral blood mononuclear cells of patients with multiple sclerosis propose. J Molecular Biology Reports, 50(1), 167–172. https://doi.org/10.1007/s11033-022-07905-0

Article  CAS  Google Scholar 

Absinta, M., Maric, D., Gharagozloo, M., Garton, T., Smith, M. D., Jin, J., & Reich, D. S. (2021). A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis. Nature, 597(7878), 709–714. https://doi.org/10.1038/s41586-021-03892-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akers, J. C., Hua, W., Li, H., Ramakrishnan, V., Yang, Z., Quan, K., Chen1, C. C. (2017). A cerebrospinal fluid microRNA signature as biomarker for glioblastoma. Oncotarget, 8(40), 68769. https://doi.org/10.18632/oncotarget.18332

Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., & Wood, M. J. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 29(4), 341–345. https://doi.org/10.1038/nbt.1807

Article  CAS  PubMed  Google Scholar 

Amoruso, A., Blonda, M., Gironi, M., Grasso, R., Di Francescantonio, V., Scaroni, F., & Avolio, C. (2020). Immune and central nervous system-related miRNAs expression profiling in monocytes of multiple sclerosis patients. Scientific Reports, 10(1), 1–8. https://doi.org/10.1038/s41598-020-63282-3

Article  CAS  Google Scholar 

Baker, D., Pryce, G., Amor, S., Giovannoni, G., & Schmierer, K. (2018). Learning from other autoimmunities to understand targeting of B cells to control multiple sclerosis. Brain, 141(10), 2834–2847. https://doi.org/10.1093/brain/awy239

Article  PubMed  Google Scholar 

Bao, B., Liu, J., Wan, L., Zhang, Y., Long, Y., Sun, G. (2021). Xinfeng capsule inhibits immune inflammation in osteoarthritis by inhibiting the miR-23a-3p/PETN/PI3K/AKT/mTOR pathway. Journal of Southern Medical University, 41(4), 483–494. https://doi.org/10.12122/j.issn.1673-4254.2021.04.02

Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297. https://doi.org/10.1016/S0092-8674(04)00045-5

Article  CAS  PubMed  Google Scholar 

Baulina, N., Kulakova, O., Kiselev, I., Osmak, G., Popova, E., Boyko, A., & Favorova, O. (2018). Immune-related miRNA expression patterns in peripheral blood mononuclear cells differ in multiple sclerosis relapse and remission. Journal of Neuroimmunology, 317, 67–76. https://doi.org/10.1016/j.jneuroim.2018.01.005

Article  CAS  PubMed  Google Scholar 

Baumjohann, D., & Ansel, K. M. (2013). MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nature Reviews Immunology, 13(9), 666–678. https://doi.org/10.1038/nri3494

Article  CAS  PubMed  PubMed Central  Google Scholar 

Belbasis, L., Bellou, V., Evangelou, E., Ioannidis, J. P., & Tzoulaki, I. (2015). Environmental risk factors and multiple sclerosis: An umbrella review of systematic reviews and meta-analyses. The Lancet Neurology, 14(3), 263–273. https://doi.org/10.1016/S1474-4422(14)70267-4

Article  PubMed  Google Scholar 

Bergman, P., Piket, E., Khademi, M., James, T., Brundin, L., Olsson, T., Jagodic, M. (2016). Circulating miR-150 in CSF is a novel candidate biomarker for multiple sclerosis. Neurology-Neuroimmunology Neuroinflammation, 3(3). https://doi.org/10.1212/NXI.0000000000000219

Boese, A. S., Saba, R., Campbell, K., Majer, A., Medina, S., Burton, L., & Booth, S. A. (2016). MicroRNA abundance is altered in synaptoneurosomes during prion disease. Molecular Cellular Neuroscience, 71, 13–24. https://doi.org/10.1016/j.mcn.2015.12.001

Article  CAS  PubMed  Google Scholar 

Chen, B. Y., Ghezzi, C., Villegas, B., Quon, A., Radu, C. G., Witte, O. N., & Clark, P. M. (2020). 18F-FAC PET visualizes brain-infiltrating leukocytes in a mouse model of multiple sclerosis. Journal of Nuclear Medicine, 61(5), 757–763. https://doi.org/10.2967/jnumed.119.229351

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng, L., Sharples, R. A., Scicluna, B. J., & Hill, A. F. (2014). Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. Journal of Extracellular Vesicles, 3(1), 23743. https://doi.org/10.3402/jev.v3.23743

Article  Google Scholar 

De Felice, B., Mondola, P., Sasso, A., Orefice, G., Bresciamorra, V., Vacca, G., & Pannone, R. (2014). Small non-coding RNA signature in multiple sclerosis patients after treatment with interferon-β. BMC Medical Genomics, 7(1), 1–9. https://doi.org/10.1186/1755-8794-7-26

Article  CAS  Google Scholar 

De Vito, F., Musella, A., Fresegna, D., Rizzo, F. R., Gentile, A., Stampanoni Bassi, M., Colamatteo, A. (2022). MiR‐142‐3p regulates synaptopathy‐driven disease progression in multiple sclerosis.Neuropathology Applied Neurobiology 48(2), e12765. https://doi.org/10.1111/nan.12765

Ding, Q., Wang, Y., Zuo, Z., Gong, Y., Krishnamurthy, S., Li, C.-W., & Huo, L. (2018). Decreased expression of microRNA-26b in locally advanced and inflammatory breast cancer. Human Pathology, 77, 121–129. https://doi.org/10.1016/j.humpath.2018.04.002

Article  CAS  PubMed  Google Scholar 

Dolati, S., Marofi, F., Babaloo, Z., Aghebati-Maleki, L., Roshangar, L., Ahmadi, M., & Yousefi, M. (2018). Dysregulated network of miRNAs involved in the pathogenesis of multiple sclerosis. Biomedicine Pharmacotherapy, 104, 280–290. https://doi.org/10.1016/j.biopha.2018.05.050

Article  CAS  PubMed  Google Scholar 

Duan, L., Duan, D., Wei, W., Sun, Z., Xu, H., Guo, L., & Wu, X. (2019). MiR-19b-3p attenuates IL-1β induced extracellular matrix degradation and inflammatory injury in chondrocytes by targeting GRK6. Molecular Cellular Biochemistry, 459(1), 205–214. https://doi.org/10.1007/s11010-019-03563-2

Article  CAS  PubMed  Google Scholar 

Dutta, R., Chang, A., Doud, M. K., Kidd, G. J., Ribaudo, M. V., Young, E. A., & Trapp, B. D. (2011). Demyelination causes synaptic alterations in hippocampi from multiple sclerosis patients. Annals of Neurology, 69(3), 445–454. https://doi.org/10.1002/ana.22337

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ebrahimkhani, S., Vafaee, F., Young, P. E., Hur, S. S., Hawke, S., Devenney, E., & Buckland, M. E. (2017). Exosomal microRNA signatures in multiple sclerosis reflect disease status. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-14301-3

Article  CAS  Google Scholar 

Feng, X., Lu, J., Wu, Y., & Xu, H. (2022). MiR-18a-3p improves cartilage matrix remodeling and inhibits inflammation in osteoarthritis by suppressing PDP1. The Journal of Physiological Sciences, 72(1), 1–10. https://doi.org/10.1186/s12576-022-00827-3

Article  CAS  Google Scholar 

Fenoglio, C., Ridolfi, E., Galimberti, D., & Scarpini, E. (2012). MicroRNAs as active players in the pathogenesis of multiple sclerosis. International Journal of Molecular Sciences, 13(10), 13227–13239. https://doi.org/10.3390/ijms131013227

Article  CAS  PubMed  PubMed Central  Google Scholar 

Filippi, M., Preziosa, P., Banwell, B. L., Barkhof, F., Ciccarelli, O., De Stefano, N., & Toosy, A. T. (2019). Assessment of lesions on magnetic resonance imaging in multiple sclerosis: Practical guidelines. Brain, 142(7), 1858–1875. https://doi.org/10.1093/brain/awz144

Article  PubMed  PubMed Central  Google Scholar 

Friess, J., Hecker, M., Roch, L., Koczan, D., Fitzner, B., Angerer, I. C., & Winkelmann, A. (2017). Fingolimod alters the transcriptome profile of circulating CD4+ cells in multiple sclerosis. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep42087

Article  CAS  Google Scholar 

Fu, X., Shen, Y., Wang, W., & Li, X. (2018). MiR-30a-5p ameliorates spinal cord injury-induced inflammatory responses and oxidative stress by targeting Neurod 1 through MAPK/ERK signalling. Clinical Experimental Pharmacology Physiology, 45(1), 68–74. https://doi.org/10.1111/1440-1681.12856

Article  CAS  PubMed  Google Scholar 

Gandhi, R. (2015). miRNA in multiple sclerosis: Search for novel biomarkers. Multiple Sclerosis Journal, 21(9), 1095–1103. https://doi.org/10.1177/1352458515578771

Article  CAS  PubMed  Google Scholar 

Guerau-de-Arellano, M., Alder, H., Ozer, H. G., Lovett-Racke, A., & Racke, M. K. (2012). miRNA profiling for biomarker discovery in multiple sclerosis: From microarray to deep sequencing. Journal of Neuroimmunology, 248(1–2), 32–39. https://doi.org/10.1093/brain/awp300

Article  CAS  PubMed  Google Scholar 

Guo, F., Lin, S., Zhao, M., Yu, B., Li, X., Gao, Q., & Lin, D. (2017). microRNA-142–3p inhibits apoptosis and inflammation induced by bleomycin through down-regulation of Cox-2 in MLE-12 cells. Brazilian Journal of Medical Biological Research, 50. https://doi.org/10.1590/1414-431X20175974

Hecker, M., Thamilarasan, M., Koczan, D., Schröder, I., Flechtner, K., Freiesleben, S., . . . Zettl, U. K. (2013). MicroRNA expression changes during interferon-beta treatment in the peripheral blood of multiple sclerosis patients. International journal of molecular sciences, 14(8), 16087–16110. https://doi.org/10.3390/ijms140816087

Helwa, I., Cai, J., Drewry, M. D., Zimmerman, A., Dinkins, M. B., Khaled, M. L., Liu, Y. (2017). A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PloS one, 12(1), e0170628. https://doi.org/10.1371/journal.pone.0170628

Hou, J., Li, A.-L., Xiong, W.-Q., & Chen, R. (2021). Hsa Circ 001839 Promoted Inflammation in Renal Ischemia-Reperfusion Injury through NLRP3 by miR-432-3p. Nephron, 145(5), 540–552. https://doi.org/10.1159/000515279

Article  CAS  PubMed  Google Scholar 

Huang, Q., Xiao, B., Ma, X., Qu, M., Li, Y., Nagarkatti, P., & Zhou, J. (2016). MicroRNAs associated with the pathogenesis of multiple sclerosis. Journal of neuroimmunology, 295, 148–161. https://doi.org/10.1016/j.jneuroim.2016.04.014

Article  CAS  PubMed  Google Scholar 

Jara, D., Carvajal, P., Castro, I., Barrera, M.-J., Aguilera, S., González, S., González, M.-J. (2021). Type I interferon dependent hsa-miR-145–5p downregulation modulates MUC1 and TLR4 overexpression in salivary glands from Sjögren’s syndrome patients. Frontiers in Immunology, 12, 685837. https://doi.org/10.3389/fimmu.2021.685837

Junker, A., Krumbholz, M., Eisele, S., Mohan, H., Augstein, F., Bittner, R., & Meinl, E. (2009). MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain, 132(12), 3342–3352. https://doi.org/10.1093/brain/awp300

Article  PubMed  Google Scholar 

Kahroba, H., Samadi, N., Mostafazadeh, M., Hejazi, M. S., Sadeghi, M. R., Hashemzadeh, S., Karimi, A. (2022). Evaluating the presence of deregulated tumoral onco-microRNAs in serum-derived exosomes of gastric cancer patients as noninvasive diagnostic biomarkers. BioImpacts, 12(2), 127. https://doi.org/10.34172/bi.2021.22178

Kim, D., Nguyen, Q. T., Lee, J., Lee, S. H., Janocha, A., Kim, S., & Min, B. (2020). Anti-inflammatory roles of glucocorticoids are mediated by Foxp3+ regulatory T cells via a miR-342-dependent mechanism. Immunity, 53(3), 581–596. https://doi.org/10.1016/j.immuni.2020.07.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kimura, K., Hohjoh, H., Fukuoka, M., Sato, W., Oki, S., Tomi, C., & Yamamura, T. (2018). Circulating exosomes suppress the induction of regulatory T cells via let-7i in multiple sclerosis. Nature communications, 9(1), 1–14. https://doi.org/10.1038/s41467-017-02406-2

Article  CAS  Google Scholar 

Konoshenko, M. Y., Lekchnov, E. A., Vlassov, A. V., & Laktionov, P. P. (2018). Isolation of extracellular vesicles: general methodologies and latest trends. BioMed research international, 2018. https://doi.org/10.1155/2018/8545347

Kosaka, N., Iguchi, H., Yoshioka, Y., Takeshita, F., Matsuki, Y., & Ochiya, T. (2010). Secretory mechanisms and intercellular transfer of microRNAs in living cells. Journal of Biological Chemistry, 285(23), 17442–17452. https://doi.org/10.1074/jbc.M110.107821

留言 (0)

沒有登入
gif