Andrade J, Khairy P, Dobrev D, Nattel S. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ Res. 2014;114(9):1453–68.
Article CAS PubMed Google Scholar
Iwasaki Y-k, Nishida K, Kato T, Nattel S. Atrial fibrillation pathophysiology: implications for management. Circulation. 2011;124(20):2264–74.
Article CAS PubMed Google Scholar
Armour JA. Potential clinical relevance of the ‘little brain’ on the mammalian heart. Exp Physiol. 2008;93(2):165–76.
Article CAS PubMed Google Scholar
Shivkumar K, Ajijola OA, Anand I, Armour JA, Chen PS, Esler M, et al. Clinical neurocardiology defining the value of neuroscience-based cardiovascular therapeutics. J Physiol. 2016;594(14):3911–54.
Article CAS PubMed PubMed Central Google Scholar
Hanna P, Buch E, Stavrakis S, Meyer C, Tompkins JD, Ardell JL, et al. Neuroscientific therapies for atrial fibrillation. Cardiovasc Res. 2021;117(7):1732–45. https://doi.org/10.1093/cvr/cvab172.
Article CAS PubMed PubMed Central Google Scholar
Zafeiropoulos S, Doundoulakis I, Farmakis IT, Miyara S, Giannis D, Giannakoulas G, et al. Autonomic neuromodulation for atrial fibrillation following cardiac surgery: JACC review topic of the week. J Am Coll Cardiol. 2022;79(7):682–94. https://doi.org/10.1016/j.jacc.2021.12.010.
Jiang Z, Zhao Y, Tsai WC, Yuan Y, Chinda K, Tan J, et al. Effects of vagal nerve stimulation on ganglionated plexi nerve activity and ventricular rate in ambulatory dogs with persistent atrial fibrillation. JACC Clin Electrophysiol. 2018;4(8):1106–14. https://doi.org/10.1016/j.jacep.2018.05.003.
Article PubMed PubMed Central Google Scholar
Ardell JL, Cardinal R, Beaumont E, Vermeulen M, Smith FM, Andrew AJ. Chronic spinal cord stimulation modifies intrinsic cardiac synaptic efficacy in the suppression of atrial fibrillation. Auton Neurosci. 2014;186:38–44. https://doi.org/10.1016/j.autneu.2014.09.017.
Article PubMed PubMed Central Google Scholar
Stavrakis S, Humphrey MB, Scherlag B, Iftikhar O, Parwani P, Abbas M, et al. Low-level vagus nerve stimulation suppresses post-operative atrial fibrillation and inflammation: a randomized study. JACC Clin Electrophysiol. 2017;3(9):929–38. https://doi.org/10.1016/j.jacep.2017.02.019.
Stavrakis S, Humphrey MB, Scherlag BJ, Hu Y, Jackman WM, Nakagawa H, et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J Am Coll Cardiol. 2015;65(9):867–75. https://doi.org/10.1016/j.jacc.2014.12.026.
Article PubMed PubMed Central Google Scholar
. Stavrakis S, Stoner JA, Humphrey MB, Morris L, Filiberti A, Reynolds JC, et al. TREAT AF (Transcutaneous Electrical Vagus Nerve Stimulation to Suppress Atrial Fibrillation): a randomized clinical trial. JACC Clin Electrophysiol. 2020;6(3):282–91. https://doi.org/10.1016/j.jacep.2019.11.008. This RCT indicates that chronic intermittent right-sided ta-VNS for 1 h daily with a frequency of 20 Hz and an amplitude adjusted individually to 1 mA below the discomfort threshold can significantly reduce AF burden over a 6-month period.
Article PubMed PubMed Central Google Scholar
Yu L, Scherlag BJ, Li S, Fan Y, Dyer J, Male S, et al. Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: a noninvasive approach to treat the initial phase of atrial fibrillation. Heart Rhythm. 2013;10(3):428–35. https://doi.org/10.1016/j.hrthm.2012.11.019.
Yuan Y, Liu X, Wan J, Wong J, Bedwell AA, Persohn SA, et al. Subcutaneous nerve stimulation for rate control in ambulatory dogs with persistent atrial fibrillation. Heart Rhythm. 2019;16(9):1383–91. https://doi.org/10.1016/j.hrthm.2019.05.029.
Article PubMed PubMed Central Google Scholar
. Kulkarni K, Singh JP, Parks KA, Katritsis DG, Stavrakis S, Armoundas AA. Low-level tragus stimulation modulates atrial alternans and fibrillation burden in patients with paroxysmal atrial fibrillation. J Am Heart Assoc. 2021;10(12):e020865. https://doi.org/10.1161/JAHA.120.020865. This study introduces P-wave alternans as an ideal biomarker for evaluating treatment response following ta-VNS and thus optimizing patient selection. The early increase in this biomarker with acute ta-VNS is associated with a lower AF burden over 6 months.
Article PubMed PubMed Central Google Scholar
Kusayama T, Wan J, Yuan Y, Liu X, Li X, Shen C, et al. Effects of subcutaneous nerve stimulation with blindly inserted electrodes on ventricular rate control in a canine model of persistent atrial fibrillation. Heart Rhythm. 2021;18(2):261–70. https://doi.org/10.1016/j.hrthm.2020.09.009.
Bettoni M, Zimmermann M. Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation. 2002;105(23):2753–9.
Po SS, Scherlag BJ, Yamanashi WS, Edwards J, Zhou J, Wu R, et al. Experimental model for paroxysmal atrial fibrillation arising at the pulmonary vein-atrial junctions. Heart Rhythm. 2006;3(2):201–8. https://doi.org/10.1016/j.hrthm.2005.11.008.
Patterson E, Po SS, Scherlag BJ, Lazzara R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm. 2005;2(6):624–31. https://doi.org/10.1016/j.hrthm.2005.02.012.
Scherlag BJ, Yamanashi W, Patel U, Lazzara R, Jackman WM. Autonomically induced conversion of pulmonary vein focal firing into atrial fibrillation. J Am Coll Cardiol. 2005;45(11):1878–86. https://doi.org/10.1016/j.jacc.2005.01.057.
Yu L, Scherlag BJ, Sha Y, Li S, Sharma T, Nakagawa H, et al. Interactions between atrial electrical remodeling and autonomic remodeling: how to break the vicious cycle. Heart Rhythm. 2012;9(5):804–9. https://doi.org/10.1016/j.hrthm.2011.12.023.
Shu C, Huang W, Zeng Z, He Y, Luo B, Liu H, et al. Connexin 43 is involved in the sympathetic atrial fibrillation in canine and canine atrial myocytes. Anatol J Cardiol. 2017;18(1):3–9. https://doi.org/10.14744/AnatolJCardiol.2017.7602.
Article CAS PubMed PubMed Central Google Scholar
Liu L, Nattel S. Differing sympathetic and vagal effects on atrial fibrillation in dogs: role of refractoriness heterogeneity. Am J Physiol Heart Circ Physiol. 1997;273(2):H805–H16.
Linz D, Schotten U, Neuberger H-R, Böhm M, Wirth K. Negative tracheal pressure during obstructive respiratory events promotes atrial fibrillation by vagal activation. Heart Rhythm. 2011;8(9):1436–43.
Linz D, Mahfoud F, Schotten U, Ukena C, Neuberger H-R, Wirth K, et al. Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension. 2012;60(1):172–8.
Article CAS PubMed Google Scholar
Rajendran PS, Hadaya J, Khalsa SS, Yu C, Chang R, Shivkumar K. The vagus nerve in cardiovascular physiology and pathophysiology: from evolutionary insights to clinical medicine. In: Seminars in Cell & Developmental Biology. Elsevier; 2023.
Sha Y, Scherlag BJ, Yu L, Sheng X, Jackman WM, Lazzara R, et al. Low-level right vagal stimulation: anticholinergic and antiadrenergic effects. J Cardiovasc Electrophysiol. 2011;22(10):1147–53. https://doi.org/10.1111/j.1540-8167.2011.02070.x.
Shen MJ, Shinohara T, Park HW, Frick K, Ice DS, Choi EK, et al. Continuous low-level vagus nerve stimulation reduces stellate ganglion nerve activity and paroxysmal atrial tachyarrhythmias in ambulatory canines. Circulation. 2011;123(20):2204–12. https://doi.org/10.1161/circulationaha.111.018028.
Article PubMed PubMed Central Google Scholar
Stavrakis S, Scherlag BJ, Fan Y, Liu Y, Mao J, Varma V, et al. Inhibition of atrial fibrillation by low-level vagus nerve stimulation: the role of the nitric oxide signaling pathway. J Interv Card Electrophysiol. 2013;36(3):199–208. https://doi.org/10.1007/s10840-012-9752-8.
Yu L, Scherlag BJ, Li S, Sheng X, Lu Z, Nakagawa H, et al. Low-level vagosympathetic nerve stimulation inhibits atrial fibrillation inducibility: direct evidence by neural recordings from intrinsic cardiac ganglia. J Cardiovasc Electrophysiol. 2011;22(4):455–63. https://doi.org/10.1111/j.1540-8167.2010.01908.x.
Sheng X, Scherlag BJ, Yu L, Li S, Ali R, Zhang Y, et al. Prevention and reversal of atrial fibrillation inducibility and autonomic remodeling by low-level vagosympathetic nerve stimulation. J Am Coll Cardiol. 2011;57(5):563–71.
Yuan Y, Jiang Z, He Y, Ding F-B, Ding S-A, Yang Y, et al. Continuous vagal nerve stimulation affects atrial neural remodeling and reduces atrial fibrillation inducibility in rabbits. Cardiovasc Pathol. 2015;24(6):395–8. https://doi.org/10.1016/j.carpath.2015.08.005.
Chinda K, Tsai W-C, Chan Y-H, Lin AY-T, Patel J, Zhao Y, et al. Intermittent left cervical vagal nerve stimulation damages the stellate ganglia and reduces the ventricular rate during sustained atrial fibrillation in ambulatory dogs. Heart Rhythm. 2016;13(3):771–80.
Butt MF, Albusoda A, Farmer AD, Aziz Q. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat. 2020;236(4):588–611.
Frangos E, Ellrich J, Komisaruk BR. Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 2015;8(3):624–36.
Chen M, Zhou X, Liu Q, Sheng X, Yu L, Wang Z, et al. Left-sided noninvasive vagus nerve stimulation suppresses atrial fibrillation by upregulating atrial gap junctions in canines. J Cardiovasc Pharmacol. 2015;66(6):593–9. https://doi.org/10.1097/fjc.0000000000000309.
Article CAS PubMed Google Scholar
Chen M, Yu L, Liu Q, Wang Z, Wang S, Jiang H, et al. Low level tragus nerve stimulation is a non-invasive approach for anti-atrial fibrillation via preventing the loss of connexins. Int J Cardiol. 2015;179:144–5. https://doi.org/10.1016/j.ijcard.2014.10.114.
Comments (0)