Up-Regulation of S100 Gene Family in Brain Samples of a Subgroup of Individuals with Schizophrenia: Meta-analysis

Ahmed, A. O., Strauss, G. P., Buchanan, R. W., Kirkpatrick, B., & Carpenter, W. T. (2018). Schizophrenia heterogeneity revisited: Clinical, cognitive, and psychosocial correlates of statistically-derived negative symptoms subgroups. Journal of Psychiatric Research, 97, 8–15. https://doi.org/10.1016/j.jpsychires.2017.11.004

Article  PubMed  Google Scholar 

Barnes, M. R., Huxley-Jones, J., Maycox, P. R., Lennon, M., Thornber, A., Kelly, F., Bates, S., Taylor, A., Reid, J., Jones, N., Schroeder, J., Scorer, C. A., Davies, C., Hagan, J. J., Kew, J. N. C., Angelinetta, C., Akbar, T., Hirsch, S., Mortimer, A. M., … de Belleroche, J. (2011). Transcription and pathway analysis of the superior temporal cortex and anterior prefrontal cortex in schizophrenia. Journal of Neuroscience Research, 89(8), 1218–1227. https://doi.org/10.1002/jnr.22647

Boerrigter, D., Weickert, T. W., Lenroot, R., O’donnell, M., Galletly, C., Liu, D., Burgess, M., Cadiz, R., Jacomb, I., Catts, V. S., Fillman, S. G., & Weickert, C. S. (2017). Using blood cytokine measures to define high inflammatory biotype of schizophrenia and schizoaffective disorder. Journal of Neuroinflammation. https://doi.org/10.1186/s12974-017-0962-y

Article  PubMed  PubMed Central  Google Scholar 

Bowden, N. A., Scott, R. J., & Tooney, P. A. (2008). Altered gene expression in the superior temporal gyrus in schizophrenia. BMC Genomics. https://doi.org/10.1186/1471-2164-9-199

Article  PubMed  PubMed Central  Google Scholar 

Bowen, E. F. W., Burgess, J. L., Granger, R., Kleinman, J. E., & Rhodes, C. H. (2019). DLPFC transcriptome defines two molecular subtypes of schizophrenia. Translational Psychiatry. https://doi.org/10.1038/s41398-019-0472-z

Article  PubMed  PubMed Central  Google Scholar 

Cai, H. Q., Catts, V. S., Webster, M. J., Galletly, C., Liu, D., O’donnell, M., Weickert, T. W., & Weickert, C. S. (2020). Increased macrophages and changed brain endothelial cell gene expression in the frontal cortex of people with schizophrenia displaying inflammation. Molecular Psychiatry, 25, 761–775. https://doi.org/10.1038/s41380-018-0235-x

Article  CAS  PubMed  Google Scholar 

Chen, C., Meng, Q., Xia, Y., Ding, C., Wang, L., Dai, R., Cheng, L., Gunaratne, P., Gibbs, R. A., Min, S., Coarfa, C., Reid, J. G., Zhang, C., Jiao, C., Jiang, Y., Giase, G., Thomas, A., Fitzgerald, D., Brunetti, T., … Liu, C. (2018). The transcription factor POU3F2 regulates a gene coexpression network in brain tissue from patients with psychiatric disorders. Science Translational Medicine. https://doi.org/10.1126/scitranslmed.aat8178

Dean, B., Gray, L., & Scarr, E. (2006). Regionally specific changes in levels of cortical S100β in bipolar 1 disorder but not schizophrenia. Australian and New Zealand Journal of Psychiatry, 40, 217–224.

PubMed  Google Scholar 

Dietz, A. G., Goldman, S. A., & Nedergaard, M. (2020). Glial cells in schizophrenia: a unified hypothesis. The Lancet Psychiatry, 7(3), 272–281. https://doi.org/10.1016/S2215-0366(19)30302-5

Article  PubMed  Google Scholar 

Donato, R. (2001). S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. The International Journal of Biochemistry & Cell Biology, 33, 637–668.

Article  CAS  Google Scholar 

Fleiss, J. L. (1993). The random effects model. Statistical Methods in Medical Research, 2, 121–145.

Article  CAS  PubMed  Google Scholar 

Fromer, M., Roussos, P., & Sieberts, S. K. (2016). Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nature Neuroscience. https://doi.org/10.1038/nn.4399

Article  PubMed  PubMed Central  Google Scholar 

Gandal, M. J., Haney, J. R., Parikshak, N. N., Leppa, V., Ramaswami, G., Hartl, C., Schork, A. J., Appadurai, V., Buil, A., Werge, T. M., Liu, C., White, K. P., Horvath, S., & Geschwind, D. H. (2018). Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science, 359, 693–697.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gardiner, E. J., Cairns, M. J., Liu, B., Beveridge, N. J., Carr, V., Kelly, B., Scott, R. J., & Tooney, P. A. (2013). Gene expression analysis reveals schizophrenia-associated dysregulation of immune pathways in peripheral blood mononuclear cells. Journal of Psychiatric Research, 47(4), 425–437. https://doi.org/10.1016/j.jpsychires.2012.11.007

Article  PubMed  Google Scholar 

Gerke, V., & Moss, S. E. (2002). Annexins: From structure to function. Physiological Reviews. https://doi.org/10.1152/physrev.00030.2001.-Annexins

Article  PubMed  Google Scholar 

Gogtay, N., Vyas, N. S., Testa, R., Wood, S. J., & Pantelis, C. (2011). Age of onset of schizophrenia: Perspectives from structural neuroimaging studies. Schizophrenia Bulletin. https://doi.org/10.1093/schbul/sbr030

Article  PubMed  PubMed Central  Google Scholar 

Golubinskaya, V., Puttonen, H., Fyhr, I. M., Rydbeck, H., Hellström, A., Jacobsson, B., Nilsson, H., Mallard, C., & Sävman, K. (2020). Expression of S100A alarmins in cord blood monocytes is highly associated with chorioamnionitis and fetal inflammation in preterm infants. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2020.01194

Guo, B., Jiang, T., Wu, F., Ni, H., Ye, J., Wu, X., Ni, C., Jiang, M., Ye, L., Li, Z., Zheng, X., Li, S., Yang, Q., Wang, Z., Huang, X., & Zhao, C. (2022). LncRNA RP5-998N21.4 promotes immune defense through upregulation of IFIT2 and IFIT3 in schizophrenia. Schizophrenia. https://doi.org/10.1038/s41537-021-00195-8

Hedges, L. (1981). Distribution theory for glass’s estimator of effect size and related estimators. Source: Journal of Educational Statistics, 6(2).

Hertzberg, L., Maggio, N., Muler, I., Yitzhaky, A., Majer, M., Haroutunian, V., Zuk, O., Katsel, P., Domany, E., & Weiser, M. (2021a). Comprehensive gene expression analysis detects global reduction of proteasome subunits in schizophrenia. Schizophrenia Bulletin, 47(3), 785–795. https://doi.org/10.1093/schbul/sbaa160

Article  PubMed  Google Scholar 

Hertzberg, L., Zohar, A. H., & Yitzhaky, A. (2021b). Gene expression meta-analysis of cerebellum samples supports the fkbp5 gene-environment interaction model for schizophrenia. Life. https://doi.org/10.3390/LIFE11030190

Article  PubMed  PubMed Central  Google Scholar 

Hoffman, G. E., Bendl, J., Voloudakis, G., Montgomery, K. S., Sloofman, L., Wang, Y.-C., Shah, H. R., Hauberg, M. E., Johnson, J. S., Girdhar, K., Song, L., Fullard, J. F., Kramer, R., Hahn, C.-G., Gur, R., Marenco, S., Lipska, B. K., Lewis, D. A., Haroutunian, V., … Roussos, P. (2019). CommonMind Consortium provides transcriptomic and epigenomic data for Schizophrenia and Bipolar Disorder. Scientific Data. https://doi.org/10.1038/s41597-019-0183-6

Iavarone, F., Melis, M., Platania, G., Cabras, T., Manconi, B., Petruzzelli, R., Cordaro, M., Siracusano, A., Faa, G., Messana, I., Zanasi, M., & Castagnola, M. (2014). Characterization of salivary proteins of schizophrenic and bipolar disorder patients by top-down proteomics. Journal of Proteomics, 103, 15–22. https://doi.org/10.1016/j.jprot.2014.03.020

Article  CAS  PubMed  Google Scholar 

Iwamoto, K., Kakiuchi, C., Bundo, M., Ikeda, K., & Kato, T. (2004). Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders. Molecular Psychiatry, 9, 406–416. https://doi.org/10.1038/sj.mp.4001437

Article  CAS  PubMed  Google Scholar 

Joaquim, H. P. G., Costa, A. C., Serpa, M. H., Talib, L. L., & Gattaz, W. F. (2020). Reduced Annexin A3 in schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 270, 489–494. https://doi.org/10.1007/s00406-019-01048-3

Article  PubMed  Google Scholar 

Junker, H., Suofu, Y., Venz, S., Sascau, M., Herndon, J. G., Kessler, C., Walther, R., & Popa-Wagner, A. (2007). Proteomic identification of an upregulated isoform of Annexin A3 in the rat brain following reversible cerebral ischemia. Glia. https://doi.org/10.1002/glia.20581

Article  PubMed  Google Scholar 

Jurga, A. M., Paleczna, M., Kadluczka, J., & Kuter, K. Z. (2021). Beyond the GFAP-astrocyte protein markers in the brain. Biomolecules. https://doi.org/10.3390/biom11091361

Article  PubMed  PubMed Central  Google Scholar 

Katsel, P., Byne, W., Roussos, P., Tan, W., Siever, L., & Haroutunian, V. (2011). Astrocyte and glutamate markers in the superficial, deep, and white matter layers of the anterior cingulate gyrus in schizophrenia. Neuropsychopharmacology, 36, 1171–1177. https://doi.org/10.1038/npp.2010.252

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kontkanen, O., Törö, P., Lakso, M., Wong, G., & Castrén, E. (2002). Antipsychotic drug treatment induces differential gene expression in the rat cortex. Journal of Neurochemistry, 83, 1043–1053.

Article  CAS  PubMed  Google Scholar 

Kulohoma, B. W., Marriage, F., Vasieva, O., Mankhambo, L., Nguyen, K., Molyneux, M. E., Molyneux, E. M., Day, P. J. R., & Carrol, E. D. (2017). Peripheral blood RNA gene expression in children with pneumococcal meningitis: A prospective case-control study. BMJ Paediatrics Open. https://doi.org/10.1136/BMJPO-2017-000092

Article  PubMed  PubMed Central  Google Scholar 

Kurian, S. M., Le-Niculescu, H., Patel, S. D., Bertram, D., Davis, J., Dike, C., Yehyawi, N., Lysaker, P., Dustin, J., Caligiuri, M., Lohr, J., Lahiri, D. K., Nurnberger, J. I., Faraone, S., Geyer, M. A., Tsuang, M. T., Schork, N. J., Salomon, D. R., & Niculescu, A. B. (2011). Identification of blood biomarkers for psychosis using convergent functional genomics. Molecular Psychiatry, 16(1), 37–58. https://doi.org/10.1038/mp.2009.117

Article  CAS  PubMed  Google Scholar 

Lanz, T. A., Reinhart, V., Sheehan, M. J., Rizzo, S. J. S., Bove, S. E., James, L. C., Volfson, D., Lewis, D. A., & Kleiman, R. J. (2019a). Postmortem transcriptional profiling reveals widespread increase in inflammation in schizophrenia: A comparison of prefrontal cortex, striatum, and hippocampus among matched tetrads of controls with subjects diagnosed with schizophrenia, bipolar or major depressive disorder. Translational Psychiatry. https://doi.org/10.1038/s41398-019-0492-8

Article  PubMed  PubMed Central  Google Scholar 

le Cabec, V., & Maridonneau-Parini, I. (1994). Annexin 3 is associated with cytoplasmic granules in neutrophils and monocytes and translocates to the plasma membrane in activated cells. Biochemical Journal, 303(2), 481–487. https://doi.org/10.1042/BJ3030481

Article  PubMed  PubMed Central  Google Scholar 

Leza, J. C., Bueno, B., Bioque, M., Arango, C., Parellada, M., Do, K., O’Donnell, P., & Bernardo, M. (2015). Inflammation in schizophrenia: A question of balance. Neuroscience & Biobehavioral Reviews, 55, 612–626. https://doi.org/10.1016/J.NEUBIOREV.2015.05.014

Article  Google Scholar 

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). Guidelines and guidance The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine. https://doi.org/10.1371/journal.pmed.1000100

Article  PubMed  PubMed Central  Google Scholar 

Maycox, P. R., Kelly, F., Taylor, A., Bates, S., Reid, J., Logendra, R., Barnes, M. R., Larminie, C., Jones, N., Lennon, M., Davies, C., Hagan, J. J., Angelinetta, C., Akbar, T., Hirsch, S., Mortimer, A. M., Barnes, T., & de Belleroche, J. (2009). Analysis of gene expression in two large schizophrenia cohorts identifies multiple changes associated with nerve terminal function. Molecular Psychiatry, 14, 1083–1094. https://doi.org/10.1038/mp.2009.18

Article  CAS  PubMed  Google Scholar 

Mcgrath, J., Saha, S., Chant, D., & Welham, J. (2008). Schizophrenia: A concise overview of incidence, prevalence, and mortality. Iranian Journal of Psychiatry and Behavioral Sciences. https://doi.org/10.1093/epirev/mxn001

Article  Google Scholar 

Merikangas, A. K., Shelly, M., Knighton, A., Kotler, N., Tanenbaum, N., & Almasy, L. (2022). What genes are differentially expressed in individuals with schizophrenia? A systematic review. Molecular Psychiatry, 27(3), 1373–1383. https://doi.org/10.1038/S41380-021-01420-7

Article  PubMed  PubMed Central  Google Scholar 

Mirnics, K.,

留言 (0)

沒有登入
gif