Transcriptome Analysis of the Mouse Medial Prefrontal Cortex in a Chronic Constriction Injury Model

Altelaar, A. F., Munoz, J., & Heck, A. J. (2013). Next-generation proteomics: Towards an integrative view of proteome dynamics. Nature Reviews Genetics, 14(1), 35–48. https://doi.org/10.1038/nrg3356

Article  CAS  PubMed  Google Scholar 

Alvarado, S., Tajerian, M., Millecamps, M., Suderman, M., Stone, L. S., & Szyf, M. (2013). Peripheral nerve injury is accompanied by chronic transcriptome-wide changes in the mouse prefrontal cortex. Molecular Pain, 9, 21. https://doi.org/10.1186/1744-8069-9-21

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arion, D., Corradi, J. P., Tang, S., Datta, D., Boothe, F., He, A., Cacace, A. M., Zaczek, R., Albright, C. F., Tseng, G., & Lewis, D. A. (2015). Distinctive transcriptome alterations of prefrontal pyramidal neurons in schizophrenia and schizoaffective disorder. Molecular Psychiatry, 20(11), 1397–1405. https://doi.org/10.1038/mp.2014.171

Article  CAS  PubMed  PubMed Central  Google Scholar 

Attal, N., Jazat, F., Kayser, V., & Guilbaud, G. (1990). Further evidence for “pain-related” behaviours in a model of unilateral peripheral mononeuropathy. Pain, 41(2), 235–251. https://doi.org/10.1016/0304-3959(90)90022-6

Article  CAS  PubMed  Google Scholar 

Avigan, P. D., Cammack, K., & Shapiro, M. L. (2020). Flexible spatial learning requires both the dorsal and ventral hippocampus and their functional interactions with the prefrontal cortex. Hippocampus, 30(7), 733–744. https://doi.org/10.1002/hipo.23198

Article  PubMed  PubMed Central  Google Scholar 

Babenko, V. N., Smagin, D. A., Galyamina, A. G., Kovalenko, I. L., & Kudryavtseva, N. N. (2018). Altered Slc25 family gene expression as markers of mitochondrial dysfunction in brain regions under experimental mixed anxiety/depression-like disorder. BMC Neuroscience, 19(1), 79. https://doi.org/10.1186/s12868-018-0480-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baliki, M. N., Chialvo, D. R., Geha, P. Y., Levy, R. M., Harden, R. N., Parrish, T. B., & Apkarian, A. V. (2006). Chronic pain and the emotional brain: Specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. Journal of Neuroscience, 26(47), 12165–12173. https://doi.org/10.1523/jneurosci.3576-06.2006

Article  CAS  PubMed  Google Scholar 

Bennett, G. J., & Xie, Y. K. (1988). A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain, 33(1), 87–107. https://doi.org/10.1016/0304-3959(88)90209-6

Article  PubMed  Google Scholar 

Bishnoi, M., Jain, A., Hurkat, P., & Jain, S. K. (2016). Chondroitin sulphate: A focus on osteoarthritis. Glycoconjugate Journal, 33(5), 693–705. https://doi.org/10.1007/s10719-016-9665-3

Article  CAS  PubMed  Google Scholar 

Cai, W., Yang, T., Liu, H., Han, L., Zhang, K., Hu, X., Zhang, X., Yin, K. J., Gao, Y., Bennett, M. V. L., Leak, R. K., & Chen, J. (2018). Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Progress in Neurobiology, 163–164, 27–58. https://doi.org/10.1016/j.pneurobio.2017.10.002

Article  CAS  PubMed  Google Scholar 

Cao, S., Fisher, D. W., Yu, T., & Dong, H. (2019). The link between chronic pain and Alzheimer’s disease. Journal of Neuroinflammation, 16(1), 204. https://doi.org/10.1186/s12974-019-1608-z

Article  PubMed  PubMed Central  Google Scholar 

Cardoso-Cruz, H., Lima, D., & Galhardo, V. (2013). Impaired spatial memory performance in a rat model of neuropathic pain is associated with reduced hippocampus-prefrontal cortex connectivity. Journal of Neuroscience, 33(6), 2465–2480. https://doi.org/10.1523/jneurosci.5197-12.2013

Article  CAS  PubMed  Google Scholar 

Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D., & Julius, D. (1997). The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature, 389(6653), 816–824. https://doi.org/10.1038/39807

Article  CAS  PubMed  Google Scholar 

Chou, C. W., Wong, G. T., Lim, G., McCabe, M. F., Wang, S., Irwin, M. G., & Mao, J. (2011). Peripheral nerve injury alters the expression of NF-κB in the rat’s hippocampus. Brain Research, 1378, 66–71. https://doi.org/10.1016/j.brainres.2011.01.006

Article  CAS  PubMed  Google Scholar 

Cohen, S. P., Vase, L., & Hooten, W. M. (2021). Chronic pain: An update on burden, best practices, and new advances. Lancet, 397(10289), 2082–2097.

Article  PubMed  Google Scholar 

Dawes, J. M., Calvo, M., Perkins, J. R., Paterson, K. J., Kiesewetter, H., Hobbs, C., Kaan, T. K., Orengo, C., Bennett, D. L., & McMahon, S. B. (2011). CXCL5 mediates UVB irradiation-induced pain. Science Translational Medicine, 3(90), 90ra60. https://doi.org/10.1126/scitranslmed.3002193

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dengler-Crish, C. M., Ball, H. C., Lin, L., Novak, K. M., & Cooper, L. N. (2018). Evidence of Wnt/β-catenin alterations in brain and bone of a tauopathy mouse model of Alzheimer’s disease. Neurobiology of Aging, 67, 148–158. https://doi.org/10.1016/j.neurobiolaging.2018.03.021

Article  CAS  PubMed  Google Scholar 

Descalzi, G., Mitsi, V., Purushothaman, I., Gaspari, S., Avrampou, K., Loh, Y. E., Shen, L., & Zachariou, V. (2017). Neuropathic pain promotes adaptive changes in gene expression in brain networks involved in stress and depression. Science Signaling. https://doi.org/10.1126/scisignal.aaj1549

Article  PubMed  PubMed Central  Google Scholar 

Doly, S., Martin, P. Y., & Courteix, C. (2021). 5-HT(6) receptor-mTOR: An hyperactive couple in neuropathic pain. Medical Science (paris), 37(5), 547–549. https://doi.org/10.1051/medsci/2021049

Article  Google Scholar 

Fonseca-Rodrigues, D., Amorim, D., Almeida, A., & Pinto-Ribeiro, F. (2021). Emotional and cognitive impairments in the peripheral nerve chronic constriction injury model (CCI) of neuropathic pain: A systematic review. Behavioural Brain Research, 399, 113008. https://doi.org/10.1016/j.bbr.2020.113008

Article  PubMed  Google Scholar 

Ford, B. (2010). Pain in Parkinson’s disease. Movement Disorders, 25(Suppl 1), S98-103. https://doi.org/10.1002/mds.22716

Article  PubMed  Google Scholar 

Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., Lin, J., Minguez, P., Bork, P., von Mering, C., & Jensen, L. J. (2013). STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Research, 41(1), D808-815. https://doi.org/10.1093/nar/gks1094

Article  CAS  PubMed  Google Scholar 

Franklin, T. B., Silva, B. A., Perova, Z., Marrone, L., Masferrer, M. E., Zhan, Y., Kaplan, A., Greetham, L., Verrechia, V., Halman, A., Pagella, S., Vyssotski, A. L., Illarionova, A., Grinevich, V., Branco, T., & Gross, C. T. (2017). Prefrontal cortical control of a brainstem social behavior circuit. Nature Neuroscience, 20(2), 260–270. https://doi.org/10.1038/nn.4470

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garcia-Larrea, L., & Peyron, R. (2013). Pain matrices and neuropathic pain matrices: A review. Pain, 154(Suppl 1), S29-s43. https://doi.org/10.1016/j.pain.2013.09.001

Article  PubMed  Google Scholar 

Gérard, C., el Mestikawy, S., Lebrand, C., Adrien, J., Ruat, M., Traiffort, E., Hamon, M., & Martres, M. P. (1996). Quantitative RT-PCR distribution of serotonin 5-HT6 receptor mRNA in the central nervous system of control or 5,7-dihydroxytryptamine-treated rats. Synapse (new York, N. Y.), 23(3), 164–173. https://doi.org/10.1002/(sici)1098-2396(199607)23:3%3c164::Aid-syn5%3e3.0.Co;2-6

Article  PubMed  Google Scholar 

Ghosh, R., & Tabrizi, S. J. (2018). Clinical features of Huntington’s disease. Advances in Experimental Medicine and Biology, 1049, 1–28. https://doi.org/10.1007/978-3-319-71779-1_1

Article  CAS  PubMed  Google Scholar 

Hare, B. D., Shinohara, R., Liu, R. J., Pothula, S., DiLeone, R. J., & Duman, R. S. (2019). Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant effects. Nature Communications, 10(1), 223. https://doi.org/10.1038/s41467-018-08168-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu, B., Doods, H., Treede, R. D., & Ceci, A. (2016). Duloxetine and 8-OH-DPAT, but not fluoxetine, reduce depression-like behaviour in an animal model of chronic neuropathic pain. Neuroscience Letters, 619, 162–167. https://doi.org/10.1016/j.neulet.2016.03.019

Article  CAS  PubMed  Google Scholar 

Huang, J., Gadotti, V. M., Chen, L., Souza, I. A., Huang, S., Wang, D., Ramakrishnan, C., Deisseroth, K., Zhang, Z., & Zamponi, G. W. (2019). A neuronal circuit for activating descending modulation of neuropathic pain. Nature Neuroscience, 22(10), 1659–1668. https://doi.org/10.1038/s41593-019-0481-5

Article  CAS  PubMed  Google Scholar 

Huang, S., Zhang, Z., Gambeta, E., Xu, S. C., Thomas, C., Godfrey, N., Chen, L., M’Dahoma, S., Borgland, S. L., & Zamponi, G. W. (2020). Dopamine inputs from the ventral tegmental area into the medial prefrontal cortex modulate neuropathic pain-associated behaviors in mice. Cell Reports, 31(12), 107812. https://doi.org/10.1016/j.celrep.2020.107812

Article  CAS  PubMed  Google Scholar 

Huda, R., Sipe, G. O., Breton-Provencher, V., Cruz, K. G., Pho, G. N., Adam, E., Gunter, L. M., Sullins, A., Wickersham, I. R., & Sur, M. (2020). Distinct prefrontal top-down circuits differentially modulate sensorimotor behavior. Nature Communications, 11(1), 6007. https://doi.org/10.1038/s41467-020-19772-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ianov, L., Rani, A., Beas, B. S., Kumar, A., & Foster, T. C. (2016). Transcription profile of aging and cognition-related genes in the medial prefrontal cortex. Front Aging Neuroscience, 8, 113. https://doi.org/10.3389/fnagi.2016.00113

Article  CAS  Google Scholar 

Johnson, P. W., Doe, C. Q., & Lai, S. L. (2018). Drosophila nucleostemin 3 is required to maintain larval neuroblast proliferation. Developmental Biology, 440(1), 1–12. https://doi.org/10.1016/j.ydbio.2018.04.014

Article  CAS  PubMed 

留言 (0)

沒有登入
gif