Shaheryar ZA, Khan MA, Adnan CS, Zaidi AA, Hanggi D, Muhammad S. Neuroinflammatory Triangle Presenting Novel Pharmacological Targets for Ischemic Brain Injury. Front Immunol. 2021;12:748663.
https://doi.org/10.3389/fimmu.2021.748663
PMid:34691061 PMCid:PMC8529160
Ng GJL, Quek AML, Cheung C, Arumugam TV, Seet RCS. Stroke biomarkers in clinical practice: A critical appraisal. Neurochem Int. 2017;107:11-22.
https://doi.org/10.1016/j.neuint.2017.01.005
PMid:28088349
Shah S, Luby M, Poole K, Morella T, Keller E, Benson RT et al. Screening with MRI for Accurate and Rapid Stroke Treatment: SMART. Neurology. 2015;84(24):2438-44.
https://doi.org/10.1212/WNL.0000000000001678
PMid:25972494 PMCid:PMC4478034
Wan HL, Hong XY, Zhao ZH, Li T, Zhang BG, Liu Q et al. STAT3 ameliorates cognitive deficits via regulation of NMDAR expression in an Alzheimer's disease animal model. Theranostics. 2021;11(11):5511-24.
https://doi.org/10.7150/thno.56541
PMid:33859760 PMCid:PMC8039956
Zhu M, Li N, Luo P, Jing W, Wen X, Liang C et al. Peripheral blood leukocyte expression of lncRNA MIAT and its diagnostic and prognostic value in ischemic stroke. J Stroke Cerebrovasc Dis. 2018;27(2):326-37.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.09.009
PMid:29030044
Hu Y, Zheng L, Zhang J, Shen Y, Zhang X, Lin L. LncRNA-MALAT1 is a promising biomarker for prognostic evaluation of tongue squamous cell carcinoma. Eur Arch Otorhinolaryngol. 2020;277(11):3155-60.
https://doi.org/10.1007/s00405-020-06023-6
PMid:32383096
Wang ML, Liu JX. MALAT1 rs619586 polymorphism functions as a prognostic biomarker in the management of differentiated thyroid carcinoma. J Cell Physiol. 2020;235(2):1700-10.
https://doi.org/10.1002/jcp.29089
PMid:31456244
Xu WW, Jin J, Wu XY, Ren QL, Farzaneh M. MALAT1-related signaling pathways in colorectal cancer. Cancer Cell Int. 2022;22(1):126.
https://doi.org/10.1186/s12935-022-02540-y
PMid:35305641 PMCid:PMC8933897
Shaker OG, Mahmoud RH, Abdelaleem OO, Ibrahem EG, Mohamed AA, Zaki OM et al. LncRNAs, MALAT1 and lnc-DC as potential biomarkers for multiple sclerosis diagnosis. Biosci Rep. 2019;39(1): BSR20181335.
https://doi.org/10.1042/BSR20181335
PMid:30514825 PMCid:PMC6331681
Chen J, He Y, Zhou L, Deng Y, Si L. Long noncoding RNA MALAT1 serves as an independent predictive biomarker for the diagnosis, severity and prognosis of patients with sepsis. Mol Med Rep. 2020;21(3):1365-73.
https://doi.org/10.3892/mmr.2020.10923
Zhang X, Tang X, Liu K, Hamblin MH, Yin KJ. Long Noncoding RNA Malat1 Regulates Cerebrovascular Pathologies in Ischemic Stroke. J Neurosci. 2017;37(7):1797-806.
https://doi.org/10.1523/JNEUROSCI.4850-04.2005
https://doi.org/10.1523/JNEUROSCI.3389-16.2017
PMid:28093478 PMCid:PMC5320610
Ren H, Wu F, Liu B, Song Z, Qu D. Association of circulating long non-coding RNA MALAT1 in diagnosis, disease surveillance, and prognosis of acute ischemic stroke. Braz J Med Biol Res. 2020;53(12):e9174.
https://doi.org/10.1590/1414-431x20209174
PMid:33111743 PMCid:PMC7584156
Wang L, Li S, Stone SS, Liu N, Gong K, Ren C et al. The Role of the lncRNA MALAT1 in Neuroprotection against Hypoxic/Ischemic Injury. Biomolecules. 2022;12(1):146.
https://doi.org/10.3390/biom12010146
https://doi.org/10.3390/biom10010146
Fathy N, Kortam MA, Shaker OG, Sayed NH. Long Noncoding RNAs MALAT1 and ANRIL Gene Variants and the Risk of Cerebral Ischemic Stroke: An Association Study. ACS Chem Neurosci. 2021;12(8):1351-62.
https://doi.org/10.1021/acschemneuro.0c00822
PMid:33818067
Doll DN, Barr TL, Simpkins JW. Cytokines: their role in stroke and potential use as biomarkers and therapeutic targets. Aging Dis. 2014;5(5):294-306.
https://doi.org/10.14336/ad.2014.0500294
PMid:25276489 PMCid:PMC4173796
Allan SM, Tyrrell PJ, Rothwell NJ. Interleukin-1 and neuronal injury. Nat Rev Immunol. 2005;5(8):629-40.
https://doi.org/10.1038/nri1664
PMid:16034365
Nilupul Perera M, Ma HK, Arakawa S, Howells DW, Markus R, Rowe CC et al. Inflammation following stroke. J Clin Neurosci. 2006;13(1):1-8.
https://doi.org/10.1016/j.jocn.2005.07.005
PMid:16410192
Liu T, Clark RK, McDonnell PC, Young PR, White RF, Barone FC et al. Tumor necrosis factor-alpha expression in ischemic neurons. Stroke. 1994;25(7):1481-8.
https://doi.org/10.1161/01.STR.25.7.1481
PMid:8023366
Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta. 2005;1754(1-2):253-62.
https://doi.org/10.1016/j.bbapap.2005.08.017
PMid:16198162
Ahn KS, Aggarwal BB. Transcription factor NF-kappaB: a sensor for smoke and stress signals. Ann N Y Acad Sci. 2005;1056:218-33.
https://doi.org/10.1196/annals.1352.026
PMid:16387690
McCandless EE, Budde M, Lees JR, Dorsey D, Lyng E, Klein RS. IL-1R signaling within the central nervous system regulates CXCL12 expression at the blood-brain barrier and disease severity during experimental autoimmune encephalomyelitis. J Immunol. 2009;183(1):613-20.
https://doi.org/10.4049/jimmunol.0802258
PMid:19535637 PMCid:PMC2892701
Wang Q, Zhu Z, Liu Y, Tu X, He J. Relationship between serum vitamin D levels and inflammatory markers in acute stroke patients. Brain Behav. 2018;8(2):e00885.
https://doi.org/10.1002/brb3.885
PMid:29484258 PMCid:PMC5822590
Shademan B, Nourazarian A, Laghousi D, Karamad V, Nikanfar M. Exploring potential serum levels of Homocysteine, interleukin-1 beta, and apolipoprotein B 48 as new biomarkers for patients with ischemic stroke. J Clin Lab Anal. 2021:e23996.
https://doi.org/10.1002/jcla.23996
Mazzotta G, Sarchielli P, Caso V, Paciaroni M, Floridi A, Floridi A et al. Different cytokine levels in thrombolysis patients as predictors for clinical outcome. Eur J Neurol. 2004;11(6):377-81.
https://doi.org/10.1111/j.1468-1331.2004.00798.x
PMid:15171733
Sotgiu S, Zanda B, Marchetti B, Fois ML, Arru G, Pes GM et al. Inflammatory biomarkers in blood of patients with acute brain ischemia. Eur J Neurol. 2006;13(5):505-13.
https://doi.org/10.1111/j.1468-1331.2006.01280.x
PMid:16722977
Kim HA, Perrelli A, Ragni A, Retta F, De Silva TM, Sobey CG et al. Vitamin D Deficiency and the Risk of Cerebrovascular Disease. Antioxidants (Basel). 2020;9(4): 327.
https://doi.org/10.3390/antiox9040327
PMid:32316584 PMCid:PMC7222411
De Silva DA, Talabucon LP, Ng EY, Ang ES, Tan EK, Lee WL. Vitamin D deficiency and its relation to underlying stroke etiology in ethnic Asian ischemic stroke patients. Int J Stroke. 2013;8(5):E18.
https://doi.org/10.1111/j.1747-4949.2012.00958.x
PMid:23782730
Chai B, Gao F, Wu R, Dong T, Gu C, Lin Q et al. Vitamin D deficiency as a risk factor for dementia and Alzheimer's disease: an updated meta-analysis. BMC Neurol. 2019;19(1):284.
https://doi.org/10.1186/s12883-019-1500-6
PMid:31722673 PMCid:PMC6854782
Huang GQ, Cheng HR, Wu YM, Cheng QQ, Wang YM, Fu JL et al. Reduced Vitamin D Levels are Associated with Stroke-Associated Pneumonia in Patients with Acute Ischemic Stroke. Clin Interv Aging. 2019;14:2305-14.
https://doi.org/10.2147/CIA.S225039
https://doi.org/10.2147/CIA.S230255
PMid:32021127 PMCid:PMC6946633
Janjusevic M, Gagno G, Fluca AL, Padoan L, Beltrami AP, Sinagra G et al. The peculiar role of vitamin D in the pathophysiology of cardiovascular and neurodegenerative diseases. Life Sci. 2022;289:120193.
https://doi.org/10.1016/j.lfs.2021.120193
PMid:34864062
Hossein-Nezhad A, Mirzaei K, Keshavarz SA, Ansar H, Saboori S, Tootee A. Evidences of dual role of vitamin D through cellular energy homeostasis and inflammation pathway in risk of cancer in obese subjects. Minerva medica. 2013;104(3):295-307.
Wiseman H. Vitamin D is a membrane antioxidant. Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action FEBS Lett. 1993; 326(1-3): 285-288.
https://doi.org/10.1016/0014-5793(93)81809-E
PMid:8325381
Bayat M, Kohlmeier KA, Haghani M, Haghighi AB, Khalili A, Bayat G et al. Co-treatment of vitamin D supplementation with enriched environment improves synaptic plasticity and spatial learning and memory in aged rats. Psychopharmacology (Berl). 2021;238(8):2297-312.
https://doi.org/10.1007/s00213-021-05853-4
PMid:33991198
Poole KE, Loveridge N, Barker PJ, Halsall DJ, Rose C, Reeve J et al. Reduced vitamin D in acute stroke. Stroke. 2006;37(1):243-5.
https://doi.org/10.1161/01.STR.0000195184.24297.c1
PMid:16322500
Alfieri DF, Lehmann MF, Oliveira SR, Flauzino T, Delongui F, de Araujo MC et al. Vitamin D deficiency is associated with acute ischemic stroke, C-reactive protein, and short-term outcome. Metab Brain Dis. 2017;32(2):493-502.
https://doi.org/10.1007/s11011-016-9939-2
PMid:27975188
Daubail B, Jacquin A, Guilland JC, Khoumri C, Aboa-Eboule C, Giroud M et al. Association between serum concentration of vitamin D and 1-year mortality in stroke patients. Cerebrovasc Dis. 2014;37(5):364-7.
https://doi.org/10.1159/000362534
PMid:24970287
Evans MA, Kim HA, Ling YH, Uong S, Vinh A, De Silva TM et al. Vitamin D3 Supplementation Reduces Subsequent Brain Injury and Inflammation Associated with Ischemic Stroke. Neuromolecular medicine. 2018;20(1):147-59.
https://doi.org/10.1007/s12017-018-8484-z
PMid:29476479 PMCid:PMC5834596
Siniscalchi A, Lochner P, Anticoli S, Chirchiglia D, De Sarro G, Gallelli L. What is the Current Role for Vitamin D and the Risk of Stroke? Current neurovascular research. 2019;16(2):178-83.
https://doi.org/10.2174/1567202616666190412152948
PMid:30977444
Wajda J, Swiat M, Owczarek AJ, Brzozowska A, Olszanecka-Glinianowicz M, Chudek J. Severity of Vitamin D Deficiency Predicts Mortality in Ischemic Stroke Patients. Dis Markers. 2019;2019:3652894.
https://doi.org/10.1155/2019/3652894
PMid:31191749 PMCid:PMC6525921
Wei ZN, Kuang JG. Vitamin D deficiency in relation to the poor functional outcomes in nondiabetic patients with ischemic stroke. Biosci Rep. 2018;38(2): BSR20171509.
https://doi.org/10.1042/BSR20171509
PMid:29437901 PMCid:PMC5835715
Tabrizi R, Moosazadeh M, Akbari M, Dabbaghmanesh MH, Mohamadkhani M, Asemi Z et al. High Prevalence of Vitamin D Deficiency among Iranian Population: A Systematic Review and Meta-Analysis. Iran J Med Sci. 2018;43(2):125-39.
Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2019;50(12):e344-e418.
https://doi.org/10.1161/STR.0000000000000211
Williams LS, Yilmaz EY, Lopez-Yunez AM. Retrospective assessment of initial stroke severity with the NIH Stroke Scale. Stroke. 2000;31(4):858-62.
https://doi.org/10.1161/01.STR.31.4.858
PMid:10753988
Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension. 2020;75(6):1334-57.
https://doi.org/10.1161/HYPERTENSIONAHA.120.15026
PMid:32370572
American Diabetes A. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2004;27 Suppl 1:S5-S10.
https://doi.org/10.2337/diacare.27.2007.S5
PMid:14693921
Balvers MG, Brouwer-Brolsma EM, Endenburg S, de Groot LC, Kok FJ, Gunnewiek JK. Recommended intakes of vitamin D to optimise health, associated circulating 25-hydroxyvitamin D concentrations, and dosing regimens to treat deficiency: workshop report and overview of current literature. J Nutr Sci. 2015;4:e23.
https://doi.org/10.1017/jns.2015.10
PMid:26090099 PMCid:PMC4463009
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C T method. Nat Protoc. 2008;3(6):1101.
https://doi.org/10.1038/nprot.2008.73
PMid:18546601
Chen L, Lu F, Wang Z, Liu L, Yin L, Zhang J et al. Influence of interleukin-1beta gene polymorphism on the risk of myocardial infarction complicated with ischemic stroke. Exp Ther Med. 2018;16(6):5166-70.
https://doi.org/10.3892/etm.2018.6842
Gao Q, Wang Y. Long noncoding RNA MALAT1 regulates apoptosis in ischemic stroke by sponging miR-205-3p and modulating PTEN expression. Am J Transl Res. 2020;12(6):2738-48.
Xin JW, Jiang YG. Long noncoding RNA MALAT1 inhibits apoptosis induced by oxygen-glucose deprivation and reoxygenation in human brain microvascular endothelial cells. Exp Ther Med. 2017;13(4):1225-34.
https://doi.org/10.3892/etm.2017.4095
PMid:28413461 PMCid:PMC5377418
Liu C, Zhang C, Yang J, Geng X, Du H, Ji X et al. Screening circular RNA expression patterns following focal cerebral ischemia in mice. Oncotarget. 2017;8(49):86535.
https://doi.org/10.18632/oncotarget.21238
PMid:29156814 PMCid:PMC5689704
Masoumi F, Ghorbani S, Talebi F, Branton WG, Rajaei S, Power C et al. Malat1 long noncoding RNA regulates inflammation and leukocyte differentiation in experimental autoimmune encephalomyelitis. J Neuroimmunol. 2019;328:50-9.
https://doi.org/10.1016/j.jneuroim.2018.11.013
PMid:30583215
Nowrouzi-Sohrabi P, Kalani M, Izadpanah P, Ahmadvand H, Fakhour M, Fadaei R et al. Vitamin D status influences cytokine production and MALAT1 expression from the PBMCs of patients with coronary artery disease and healthy controls. Rev Assoc Med Bras (1992). 2020;66(12):1712-7.
https://doi.org/10.1590/1806-9282.66.12.1712
PMid:33331582
Durrant LR, Bucca G, Hesketh A, Moller-Levet C, Tripkovic L, Wu H et al. Vitamins D2 and D3 Have Overlapping But Different Effects on the Human Immune System Revealed Through Analysis of the Blood Transcriptome. Front Immunol. 2022;13:790444.
https://doi.org/10.3389/fimmu.2022.790444
PMid:35281034 PMCid:PMC8908317
Roffe-Vazquez DN, Huerta-Delgado AS, Castillo EC, Villarreal-Calderon JR, Gonzalez-Gil AM, Enriquez C et al. Correlation of Vitamin D with Inflammatory Cytokines, Atherosclerotic Parameters, and Lifestyle Factors in the Setting of Heart Failure: A 12-Month Follow-Up Study. Int J Mol Sci. 2019;20(22): 5811.
https://doi.org/10.3390/ijms20225811
PMid:31752330 PMCid:PMC6887713
Chen Y, Zhang J, Ge X, Du J, Deb DK, Li YC. Vitamin D receptor inhibits nuclear factor kappaB activation by interacting with IkappaB kinase beta protein. J Biol Chem. 2013;288(27):19450-8.
https://doi.org/10.1074/jbc.M113.467670
PMid:23671281 PMCid:PMC3707648
Nonn L, Peng L, Feldman D, Peehl DM. Inhibition of p38 by vitamin D reduces interleukin-6 production in normal prostate cells via mitogen-activated protein kinase phosphatase 5: implications for prostate cancer prevention by vitamin D. Cancer Res. 2006;66(8):4516-24.
https://doi.org/10.1158/0008-5472.CAN-05-3796
PMid:16618780
Comments (0)