Lea IA, Gong H, Paleja A, Rashid A, Fostel J. CEBS: a comprehensive annotated database of toxicological data. Nucleic Acids Res. 2017;45:D964–71.
Davis AP, Grondin CJ, Johnson RJ, Sciaky D, King BL, McMorran R, et al. The comparative toxicogenomics database: update 2017. Nucleic Acids Res. 2017;45:D972–8.
Judson RS, Martin MT, Egeghy P, Gangwal S, Reif DM, Kothiya P, et al. Aggregating data for computational toxicology applications: the U.S. Environmental Protection Agency (EPA) Aggregated Computational Toxicology Resource (ACToR) system. Int J Mol Sci. 2012;13:1805–31.
Davis AP, Wiegers TC, Grondin CJ, Johnson RJ, Sciaky D, Wiegers J, et al. Leveraging the comparative toxicogenomics database to fill in knowledge gaps for environmental health: a test case for air pollution-induced cardiovascular disease. Toxicol Sci. 2020;177:392–404.
Haendel M, Eddy J, Walden A, Volchenboum S. Response to Request for Information (RFI): use of Common Data Elements (CDEs) in NIH-funded research: NOT-LM-21-005. 2021. Available from: https://zenodo.org/record/4903509.
Viet SM, Falman JC, Merrill LS, Faustman EM, Savitz DA, Mervish N, et al. Human Health Exposure Analysis Resource (HHEAR): a model for incorporating the exposome into health studies. Int J Hyg Environ Health. 2021;235:113768.
Bodenreider O. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res. 2004;32:D267–70.
Ives C, Campia I, Wang RL, Wittwehr C, Edwards S. Creating a Structured AOP Knowledgebase via ontology-based annotations. Appl In Vitro Toxicol. 2017;3(4):298–311.
Thessen AE, Grondin CJ, Kulkarni RD, Brander S, Truong L, Vasilevsky NA, et al. Community approaches for integrating environmental exposures into human models of disease. Environ Health Perspect. 2020;128:125002.
National Academies of Sciences Engineering, Medicine. In: Alper J, editor. Informing environmental health decisions through data integration: proceedings of a workshop—in brief. Washington, DC: The National Academies Press; 2018.
Manrai AK, Cui Y, Bushel PR, Hall M, Karakitsios S, Mattingly CJ, et al. Informatics and data analytics to support exposome-based discovery for public health. Annu Rev Public Health. 2017;38:279–94.
Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR guiding principles for scientific data management and stewardship. Sci Data. 2016;3:160018.
Buttigieg PL, Pafilis E, Lewis SE, Schildhauer MP, Walls RL, Mungall CJ. The environment ontology in 2016: bridging domains with increased scope, semantic density, and interoperation. J Biomed Semant. 2016;7:57.
Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, et al. ChEBI in 2016: improved services and an expanding collection of metabolites. Nucleic Acids Res. 2016;44:D1214–9.
Lozowicka B. Health risk for children and adults consuming apples with pesticide residue. Sci Total Environ. 2015;502:184–98.
Hites RA. The rise and fall of chlorpyrifos in the United States. Environ Sci Technol. 2021;55:1354–8.
Chlorpyrifos [Internet]. [cited 26 Jan 2022]. http://npic.orst.edu/factsheets/chlorpgen.html.
GitHub - Environmental Conditions, Treatments, and Exposures Ontology (ECTO). The Environment Ontology; 2020. Available from: https://github.com/EnvironmentOntology/environmental-exposure-ontology.
Matentzoglu N, Mungall C, Goutte-Gattat D. Ontology development kit. 2021. Available from: https://zenodo.org/record/5762512
Mattingly CJ, McKone TE, Callahan MA, Blake JA, Hubal EAC. Providing the missing link: the exposure science ontology ExO. Environ Sci Technol. 2012;46:3046–53.
Guardia GDA, Vêncio RZN, de Farias CRG. A UML profile for the OBO relation ontology. BMC Genomics. 2012;13 Suppl 5:S3.
Fokkens A, van Erp M, Vossen P, Tonelli S, van Hage WR, Serafini L, et al. GAF: A Grounded Annotation Framework for Events. In: Workshop on Events: Definition, Detection, Coreference, and Representation. Atlanta, Georgia: Association for Computational Linguistics; 2013. p. 11–20.
Gene Ontology Consortium, Blake JA, Dolan M, Drabkin H, Hill DP, Li N, et al. Gene ontology annotations and resources. Nucleic Acids Res. 2013;41:D530–5.
Musen MA, Protégé Team. The protégé project: a look back and a look forward. AI Matters. 2015;1:4–12 dl.acm.org.
Osumi-Sutherland D, Courtot M, Balhoff JP, Mungall C. Dead simple OWL design patterns. J Biomed Semant. 2017;8:18.
ECTO - dead simple OWL design patterns repository. Github. [Cited 23 Feb 2022]. Available from: https://github.com/EnvironmentOntology/environmental-exposure-ontology.
Shefchek KA, Harris NL, Gargano M, Matentzoglu N, Unni D, Brush M, et al. The Monarch Initiative in 2019: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res. 2020;48:D704–15.
Home - National Toxicology Program. {Cited 9 Mar 2022]. Available from: https://ntp.niehs.nih.gov/.
Toro S, Hamosh A, Matentzoglu N, Munoz-Torres M, Chan L, Thaxton C, et al. New view of the Mondo disease ontology high-level classification according to Harrison’s principles of internal medicine textbook. 2021. Available from: https://zenodo.org/record/5273598
Mondo disease ontology. [Cited 23 Mar 2022]. Available from: https://mondo.monarchinitiative.org/.
DOSDP - realized_in_response_to_environmental_exposure.yaml. Github. [Cited 23 Feb 2022]. Available from: https://github.com/monarch-initiative/mondo.
Howe DG, Bradford YM, Eagle A, Fashena D, Frazer K, Kalita P, et al. The Zebrafish Model Organism Database: new support for human disease models, mutation details, gene expression phenotypes and searching. Nucleic Acids Res. 2017;45:D758–68.
Matentzoglu N, Anangnostopoulos A, Balhoff J, Bello S, Brandford Y, Carmody L, et al. uPheno 2.0: Unifying phenotype representation and analysis across species. Available from: https://docs.google.com/document/u/1/d/14J4AxwAhUfKgnHfFaUJ0AoMwQ8UKUI4kyuTpDOFnUjI/edit?usp=gmail&usp=embed_facebook. Accessed 4 Mar 2022.
Bradford YM, Van Slyke CE, Toro S, Ramachandran S. The zebrafish experimental conditions ontology. [Cited 7 Jul 2021]. Available from: http://ceur-ws.org/Vol-1747/IP25_ICBO2016.pdf.
Cooper L, Meier A, Laporte MA, Elser JL, Mungall C, Sinn BT, et al. The Planteome database: an integrated resource for reference ontologies, plant genomics and phenomics. Nucleic Acids Res. 2018;46:D1168–80.
PEGS: Personalized Environment and Genes Study. [Cited 10 Nov 2021]. Available from: https://www.niehs.nih.gov/research/clinical/studies/pegs/index.cfm.
Dai YJ, Jia YF, Chen N, Bian WP, Li QK, Ma YB, et al. Zebrafish as a model system to study toxicology. Environ Toxicol Chem. 2014;33:11–7.
Matentzoglu N, Malone J, Mungall C, Stevens R. MIRO: guidelines for minimum information for the reporting of an ontology. J Biomed Semant. 2018;9:6.
Buttigieg PL, Morrison N, Smith B, Mungall CJ, Lewis SE, ENVO Consortium. The environment ontology: contextualising biological and biomedical entities. J Biomed Semant. 2013;4:43.
Dooley DM, Griffiths EJ, Gosal GS, Buttigieg PL, Hoehndorf R, Lange MC, et al. FoodOn: a harmonized food ontology to increase global food traceability, quality control and data integration. npj Sci Food. 2018;2:1–10.
Golbeck J, Fragoso G, Hartel F, Hendler J, Oberthaler J, Parsia B. The National Cancer Institute’s thesaurus and ontology. 2003. [Cited 29 Jan 2021]. Available from: https://papers.ssrn.com/abstract=3199007.
Federhen S. The NCBI taxonomy database. Nucleic Acids Res. 2012;40:D136–43.
Comments (0)