Introduction: Aging of the kidney is associated with complex molecular, histological, and functional changes. Although the aging process itself does not induce renal damage, underlying disease such as diabetes mellitus can aggravate kidney injury during aging. Although oxidative stress is considered an important mediator in age-related renal fibrosis, it is unclear how oxidative stress increases during normal and diabetic aging. Methods: In this study, we investigated molecular changes in the kidney in normal and diabetic aging mice. C57BL6 mice were studied at 2, 12, and 24 months of age, and leptin receptor-deficient db/db mice were studied at 8, 12, 16, 20, 24 and 38 weeks of age. We measured renal functional parameters, fibrotic and inflammatory markers, and oxidative stress markers at all the above time points. Results: Both non-diabetic and diabetic mice exhibited progressive microalbuminuria during their lifespan. Interestingly, both diabetic aging and normal aging mice showed progressive increases in oxidative stress markers such as plasma and urinary 8-isoprostane as well as renal lipid hydroperoxide content. In renal tissues, proinflammatory and profibrotic molecules were significantly upregulated in an age-dependent manner. Expression of three NADPH oxidase (Nox) isoforms, namely Nox1, Nox2, and Nox4, was significantly increased during aging. Compared with normal aging mice, diabetic db/db mice demonstrated more dramatic changes during aging process. Conclusions: Our findings suggest that NADPH oxidases play an important role in the aging kidney under both normal and diabetic conditions. Targeting of these oxidases might be a new promising therapy to treat issues associated with aging kidneys.
The Author(s). Published by S. Karger AG, Basel
Article / Publication Details
Comments (0)