Abarbanel, H. D. I., Huerta, R., Rabinovich, M. I., Rulkov, N. F., Rowat, P. F., & Selverston, A. I. (1996). Synchronized Action of Synaptically Coupled Chaotic Model Neurons. Neural Computation, 8(8), 1567–1602. https://doi.org/10.1162/NECO.1996.8.8.1567
Alekseev, S. I., Gordiienko, O. V., Radzievsky, A. A., & Ziskin, M. C. (2010). Millimeter wave effects on electrical responses of the sural nerve invivo. Bioelectromagnetics, 31(3), 180–190. https://doi.org/10.1002/bem.20547
An, X., & Qiao, S. (2021). The hidden, period-adding, mixed-mode oscillations and control in a HR neuron under electromagnetic induction. Chaos, Solitons and Fractals, 143, 110587. https://doi.org/10.1016/j.chaos.2020.110587
Bashkirtseva, I. A., Ryashko, L. B., & Pisarchik, A. N. (2020). Ring of map-based neural oscillators: From order to chaos and back. Chaos, Solitons and Fractals, 136, 109830. https://doi.org/10.1016/j.chaos.2020.109830
Bodewein, L., Schmiedchen, K., Dechent, D., Stunder, D., Graefrath, D., Winter, L., et al. (2019). Systematic review on the biological effects of electric, magnetic and electromagnetic fields in the intermediate frequency range (300 Hz to 1 MHz). Environmental Research. Academic Press Inc. https://doi.org/10.1016/j.envres.2019.01.015
Bortolotto, G. S., Stenzinger, R. V., & Tragtenberg, M. H. R. (2019). Electromagnetic induction on a map-based action potential model. Nonlinear Dynamics, 95(1), 433–444. https://doi.org/10.1007/s11071-018-4574-6
Cao, H., & Sanjuán, M. A. F. (2009). A mechanism for elliptic-like bursting and synchronization of bursts in a map-based neuron network. Cognitive Processing, 10(1 SUPPL.), 23–31. https://doi.org/10.1007/s10339-008-0222-2
Courbage, M., & Nekorkin, V. I. (2010). MAP BASED MODELS IN NEURODYNAMICS. International Journal of Bifurcation and Chaos, 20(6), 1631–1651. https://doi.org/10.1142/S0218127410026733
Courbage, M., Nekorkin, V. I., & Vdovin, L. V. (2007). Chaotic oscillations in a map-based model of neural activity. Chaos, 17(4). https://doi.org/10.1063/1.2795435
Dipalo, M., Amin, H., Lovato, L., Moia, F., Caprettini, V., Messina, G. C., et al. (2017). Intracellular and Extracellular Recording of Spontaneous Action Potentials in Mammalian Neurons and Cardiac Cells with 3D Plasmonic Nanoelectrodes. Nano Letters, 17(6), 3932–3939. https://doi.org/10.1021/ACS.NANOLETT.7B01523
Friesen, W. O. (1989). Neuronal control of leech swimming movements. Journal of Comparative Physiology A 1989 166:2, 166(2), 205–215. https://doi.org/10.1007/BF00193465
Ge, M., Lu, L., Xu, Y., Mamatimin, R., Pei, Q., & Jia, Y. (2020). Vibrational mono-/bi-resonance and wave propagation in FitzHugh–Nagumo neural systems under electromagnetic induction. Chaos, Solitons and Fractals. https://doi.org/10.1016/j.chaos.2020.109645
Girardi-Schappo, M., Tragtenberg, M. H. R., & Kinouchi, O. (2013). A brief history of excitable map-based neurons and neural networks. Journal of Neuroscience Methods, 220(2), 116–130. https://doi.org/10.1016/j.jneumeth.2013.07.014
Gramowski-Voß, A., Schwertle, H.-J., Pielka, A.-M., Schultz, L., Steder, A., Jügelt, K., et al. (2015). Enhancement of Cortical Network Activity in vitro and Promotion of GABAergic Neurogenesis by Stimulation with an Electromagnetic Field with a 150 MHz Carrier Wave Pulsed with an Alternating 10 and 16 Hz Modulation. Frontiers in Neurology, 0(JUN), 158. https://doi.org/10.3389/FNEUR.2015.00158
Grande García, I. (2007). The evolution of brain and mind: A non-equilibrium thermodynamics approach. Ludus Vitalis, 15(27), 103–125.
Gu, X., Olson, E. C., & Spitzer, N. C. (1994). Spontaneous neuronal calcium spikes and waves during early differentiation. Journal of Neuroscience, 14(11 I), 6325–6335. https://doi.org/10.1523/jneurosci.14-11-06325.1994
Ibarz, B., Casado, J. M., & Sanjuán, M. A. F. (2011). Map-based models in neuronal dynamics. Physics Reports, 501(1–2), 1–74. https://doi.org/10.1016/j.physrep.2010.12.003
Kafraj, M. S., Parastesh, F., & Jafari, S. (2020). Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise. Chaos, Solitons & Fractals, 137, 109782. https://doi.org/10.1016/J.CHAOS.2020.109782
Latham, P. E., Richmond, B. J., Nirenberg, S., & Nelson, P. G. (2000). Intrinsic dynamics in neuronal networks. II. Experiment. Journal of Neurophysiology, 83(2), 828–835. https://doi.org/10.1152/JN.2000.83.2.828/ASSET/IMAGES/LARGE/9K0200750007.JPEG
Li, J., Liu, S., Liu, W., Yu, Y., & Wu, Y. (2015). Suppression of firing activities in neuron and neurons of network induced by electromagnetic radiation. Nonlinear Dynamics 2015 83:1, 83(1), 801–810. https://doi.org/10.1007/S11071-015-2368-7
Li, K., Bao, H., Li, H., Ma, J., Hua, Z., & Bao, B. (2022a). Memristive Rulkov Neuron Model with Magnetic Induction Effects. IEEE Transactions on Industrial Informatics, 18(3), 1726–1736. https://doi.org/10.1109/TII.2021.3086819
Li, T., Wang, G., Yu, D., Ding, Q., & Jia, Y. (2022b). Synchronization mode transitions induced by chaos in modified Morris–Lecar neural systems with weak coupling. Nonlinear Dynamics 2022b 108:3, 108(3), 2611–2625. https://doi.org/10.1007/S11071-022-07318-5
Liu, Y., Sun, Z., Yang, X., & Xu, W. (2021). Rhythmicity and firing modes in modular neuronal network under electromagnetic field. Nonlinear Dynamics, 104(4), 4391–4400. https://doi.org/10.1007/s11071-021-06470-8
Luhmann, H. J., Sinning, A., Yang, J.-W., Reyes-Puerta, V., Stüttgen, M. C., Kirischuk, S., & Kilb, W. (2016). Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions. Frontiers in Neural Circuits, 10(MAY), 40. https://doi.org/10.3389/FNCIR.2016.00040
Lv, M., & Ma, J. (2016). Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing, 205, 375–381. https://doi.org/10.1016/j.neucom.2016.05.004
Lv, M., Wang, C., Ren, G., Ma, J., & Song, X. (2016). Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dynamics, 85(3), 1479–1490. https://doi.org/10.1007/s11071-016-2773-6
Mazzoni, A., Broccard, F. D., Garcia-Perez, E., Bonifazi, P., Ruaro, M. E., & Torre, V. (2007). On the dynamics of the spontaneous activity in neuronal networks. PLoS ONE, 2(5), 439. https://doi.org/10.1371/journal.pone.0000439
Mesbah, S., Moghtadaei, M., Hashemi Golpayegani, M. R., & Towhidkhah, F. (2014). One-dimensional map-based neuron model: A logistic modification. Chaos, Solitons and Fractals, 65, 20–29. https://doi.org/10.1016/j.chaos.2014.04.006
Miyawaki, Y., Shinozaki, T., & Okada, M. (2012). Spike suppression in a local cortical circuit induced by transcranial magnetic stimulation. Journal of Computational Neuroscience, 33(2), 405–419. https://doi.org/10.1007/S10827-012-0392-X/FIGURES/7
Moshtagh-Khorasani, M., Miller, E. W., & Torre, V. (2013). The spontaneous electrical activity of neurons in leech ganglia. Physiological Reports, 1(5), 89. https://doi.org/10.1002/phy2.89
Napoli, A., & Obeid, I. (2016). Comparative Analysis of Human and Rodent Brain Primary Neuronal Culture Spontaneous Activity Using Micro-Electrode Array Technology. Journal of Cellular Biochemistry, 117(3), 559–565. https://doi.org/10.1002/JCB.25312
NF, R. (2001). Regularization of synchronized chaotic bursts. Physical Review Letters, 86(1), 183–186. https://doi.org/10.1103/PHYSREVLETT.86.183
Parastesh, F., Azarnoush, H., Jafari, S., Hatef, B., Perc, M., & Repnik, R. (2019). Synchronizability of two neurons with switching in the coupling. Applied Mathematics and Computation, 350, 217–223. https://doi.org/10.1016/J.AMC.2019.01.011
Pinto, R. D., Varona, P., Volkovskii, A. R., Szücs, A., Abarbanel, H. D. I., & Rabinovich, M. I. (2000). Synchronous behavior of two coupled electronic neurons. Physical Review E, 62(2), 2644. https://doi.org/10.1103/PhysRevE.62.2644
Qu, J., Wang, R., Yan, C., & Du, Y. (2016). Spatiotemporal Behavior of Small-World Neuronal Networks Using a Map-Based Model. Neural Processing Letters 2016 45:2, 45(2), 689–701. https://doi.org/10.1007/S11063-016-9547-5
Ramakrishnan, B., Mehrabbeik, M., Parastesh, F., Rajagopal, K., & Jafari, S. (2022). A New Memristive Neuron Map Model and Its Network’s Dynamics under Electrochemical Coupling. Electronics, 11(1), 153. https://doi.org/10.3390/ELECTRONICS11010153
Rulkov, N. F., Timofeev, I., & Bazhenov, M. (2004). Oscillations in large-scale cortical networks: Map-based model. Journal of Computational Neuroscience, 17(2), 203–223. https://doi.org/10.1023/B:JCNS.0000037683.55688.7e
Shi, X., & Lu, Q. S. (2005). Firing patterns and complete synchronization of coupled Hindmarsh-Rose neurons. Chinese Physics, 14(1), 77. https://doi.org/10.1088/1009-1963/14/1/016
Shilnikov, A. L., & Rulkov, N. F. (2003). Origin of chaos in a two-dimensional map modeling spiking-bursting neural activity. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 13(11), 3325–3340. https://doi.org/10.1142/S0218127403008521
Shuai, J. W., & Durand, D. M. (1999). Phase synchronization in two coupled chaotic neurons. Physics Letters A, 264(4), 289–297. https://doi.org/10.1016/S0375-9601(99)00816-6
Takembo, C. N., Mvogo, A., Ekobena Fouda, H. P., & Kofané, T. C. (2019). Effect of electromagnetic radiation on the dynamics of spatiotemporal patterns in memristor-based neuronal network. Nonlinear Dynamics, 95(2), 1067–1078. https://doi.org/10.1007/s11071-018-4616-0
Usha, K., & Subha, P. A. (2019). Hindmarsh-Rose neuron model with memristors. Bio Systems, 178, 1–9. https://doi.org/10.1016/J.BIOSYSTEMS.2019.01.005
van Drongelen, W. (2013). Modeling Neural Activity. ISRN Biomathematics. https://doi.org/10.1155/2013/871472
Varona, P., Torres, J. J., Abarbanel, H. D. I., Rabinovich, M. I., & Elson, R. C. (2001). Dynamics of two electrically coupled chaotic neurons: Experimental observations and model analysis. Biological Cybernetics 2001 84:2, 84(2), 91–101. https://doi.org/10.1007/S004220000198
Von Bertalanffy, L. (1950). The theory of open systems in physics and biology. Science, 111(2872), 23–29. https://doi.org/10.1126/science.111.2872.23
Wagemakers, A., & Sanjuán, M. A. F. (2013). Electronic circuit implementation of the chaotic Rulkov neuron model. Journal of the Franklin Institute, 350(10), 2901–2910. https://doi.org/10.1016/j.jfranklin.2013.01.026
Wang, G., Yang, L., Zhan, X., Li, A., & Jia, Y. (2022). Chaotic resonance in Izhikevich neural network motifs under electromagnetic induction. Nonlinear Dynamics 2021 107:4, 107(4), 3945–3962. https://doi.org/10.1007/S11071-021-07150-3
Wang, G., Yu, D., Ding, Q., Li, T., & Jia, Y. (2021). Effects of electric field on multiple vibrational resonances in Hindmarsh-Rose neuronal systems. Chaos, Solitons & Fractals, 150, 111210. https://doi.org/10.1016/J.CHAOS.2021.111210
Wouapi, M. K., Fotsin, B. H., Ngouonkadi, E. B. M., Kemwoue, F. F., & Njitacke, Z. T. (2021). Complex bifurcation analysis and synchronization optimal control for Hindmarsh-Rose neuron model under magnetic flow effect. Cognitive Neurodynamics, 15(2), 315–347. https://doi.org/10.1007/S11571-020-09606-5
Wu, F., Ma, J., & Zhang, G. (2019). A new neuron model under electromagnetic field. Applied Mathematics and Computation, 347, 590–599. https://doi.org/10.1016/j.amc.2018.10.087
Wu, T., Fan, J., Lee, K. S., & Li, X. (2015). Cortical neuron activation induced by electromagnetic stimulation: a quantitative analysis via modelling and simulation. Journal of Computational Neuroscience 2015 40:1, 40(1), 51–64. https://doi.org/10.1007/S10827-015-0585-1
Wu, Y., Ding, Q., Li, T., Yu, D., & Jia, Y. (2022). Effect of temperature on synchronization of scale-free neuronal network. Nonlinear Dynamics, 2022, 1–18. https://doi.org/10.1007/S11071-022-07967-6
Yang, H., Wang, H., Guo, L., & Xu, G. (2021a). Dynamic responses of neurons in different states under magnetic field stimulation. Journal of Computational Neuroscience 2021a 50:1, 50(1), 109–120. https://doi.org/10.1007/S10827-021-00796-3
Yang, Y., Ma, J., Xu, Y., & Jia, Y. (2021b). Energy dependence on discharge mode of Izhikevich neuron driven by external stimulus under electromagnetic induction. Cognitive Neurodynamics, 15(2), 265–277. https://doi.org/10.1007/s11571-020-09596-4
Comments (0)