Greater functional connectivity between the ventral frontal cortex and occipital cortex in herpes zoster patients than post-herpetic neuralgia patients

1. Jeon YH. Herpes zoster and postherpetic neuralgia: practical consideration for prevention and treatment. Korean J Pain 2015; 28: 177–84. doi: https://doi.org/10.3344/kjp.2015.28.3.177

2. Pickering G, , Gavazzi G, , Gaillat J, , Paccalin M, , Bloch K, , Bouhassira D. Is herpes zoster an additional complication in old age alongside comorbidity and multiple medications? results of the post hoc analysis of the 12-month longitudinal prospective observational Arizona cohort study. BMJ Open 2016; 6(2): e009689. doi: https://doi.org/10.1136/bmjopen-2015-009689

3. Johnson RW, , Bouhassira D, , Kassianos G, , Leplège A, , Schmader KE, , Weinke T. The impact of herpes zoster and post-herpetic neuralgia on quality-of-life. BMC Med 2010; 8: 37. doi: https://doi.org/10.1186/1741-7015-8-37

4. Gauthier A, , Breuer J, , Carrington D, , Martin M, , Rémy V. Epidemiology and cost of herpes zoster and post-herpetic neuralgia in the United Kingdom. Epidemiol Infect 2009; 137: 38–47. doi: https://doi.org/10.1017/S0950268808000678

5. Li H, , Li X, , Feng Y, , Gao F, , Kong Y, , Hu L. Deficits in ascending and descending pain modulation pathways in patients with postherpetic neuralgia. Neuroimage 2020; 221: S1053-8119(20)30672-8. doi: https://doi.org/10.1016/j.neuroimage.2020.117186

6. Gu L, , Hong S, , Jiang J, , Liu J, , Cao X, , Huang Q, , et al.. Bidirectional alterations in ALFF across slow-5 and slow-4 frequencies in the brains of postherpetic neuralgia patients. J Pain Res 2019; 12: 39–47.

7. Jiang J, , Gu L, , Bao D, , Hong S, , He W, , Tan Y, , et al.. Altered homotopic connectivity in postherpetic neuralgia: a resting state fmri study. J Pain Res 2016; 9: 877–86. doi: https://doi.org/10.2147/JPR.S117787

8. Hong S, , Gu L, , Zhou F, , Liu J, , Huang M, , Jiang J, , et al.. Altered functional connectivity density in patients with herpes zoster and postherpetic neuralgia. J Pain Res 2018; 11: 881–88. doi: https://doi.org/10.2147/JPR.S154314

9. Wu Y, , Wang C, , Yu L, , Qian W, , Xing X, , Zhang M, , et al.. Abnormal within- and cross-networks functional connectivity in different outcomes of herpes zoster patients. Brain Imaging Behav 2022; 16: 366–78. doi: https://doi.org/10.1007/s11682-021-00510-y

10. De Pauw R, , Aerts H, , Siugzdaite R, , Meeus M, , Coppieters I, , Caeyenberghs K, , et al.. Hub disruption in patients with chronic neck pain: a graph analytical approach. Pain 2020; 161: 729–41. doi: https://doi.org/10.1097/j.pain.0000000000001762

11. Zhang Y, , Liu J, , Li L, , Du M, , Fang W, , Wang D, , et al.. A study on small-world brain functional networks altered by postherpetic neuralgia. Magn Reson Imaging 2014; 32: 359–65. doi: https://doi.org/10.1016/j.mri.2013.12.016

12. Pei Q, , Zhuo Z, , Jing B, , Meng Q, , Ma X, , Mo X, , et al.. The effects of repetitive transcranial magnetic stimulation on the whole-brain functional network of postherpetic neuralgia patients. Medicine (Baltimore) 2019; 98: e16105. doi: https://doi.org/10.1097/MD.0000000000016105

13. Wang J, , Wang X, , Xia M, , Liao X, , Evans A, , He Y. GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci 2015; 9: 386. doi: https://doi.org/10.3389/fnhum.2015.00386

14. Murphy K, , Fox MD. Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage 2017; 154: 169–73. doi: https://doi.org/10.1016/j.neuroimage.2016.11.052

15. Garrison KA, , Scheinost D, , Finn ES, , Shen X, , Constable RT. The (in) stability of functional brain network measures across thresholds. Neuroimage 2015; 118: 651–61. doi: https://doi.org/10.1016/j.neuroimage.2015.05.046

16. Triana AM, , Glerean E, , Saramäki J, , Korhonen O. Effects of spatial smoothing on group-level differences in functional brain networks. Netw Neurosci 2020; 4: 556–74. doi: https://doi.org/10.1162/netn_a_00132

17. Dosenbach NUF, , Nardos B, , Cohen AL, , Fair DA, , Power JD, , Church JA, , et al.. Prediction of individual brain maturity using fMRI. Science 2010; 329: 1358–61. doi: https://doi.org/10.1126/science.1194144

18. Zalesky A, , Fornito A, , Bullmore ET. Network-Based statistic: identifying differences in brain networks. Neuroimage 2010; 53: 1197–1207. doi: https://doi.org/10.1016/j.neuroimage.2010.06.041

19. Zheng W, , Woo C-W, , Yao Z, , Goldstein P, , Atlas LY, , Roy M, , et al.. Pain-evoked reorganization in functional brain networks. Cereb Cortex 2020; 30: 2804–22. doi: https://doi.org/10.1093/cercor/bhz276

20. Parente F, , Frascarelli M, , Mirigliani A, , Di Fabio F, , Biondi M, , Colosimo A. Negative functional brain networks. Brain Imaging Behav 2018; 12: 467–76. doi: https://doi.org/10.1007/s11682-017-9715-x

21. Rubinov M, , Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2010; 52: 1059–69. doi: https://doi.org/10.1016/j.neuroimage.2009.10.003

22. Tsai Y-H, , Yuan R, , Patel D, , Chandrasekaran S, , Weng H-H, , Yang J-T, , et al.. Altered structure and functional connection in patients with classical trigeminal neuralgia. Hum Brain Mapp 2018; 39: 609–21. doi: https://doi.org/10.1002/hbm.23696

23. Yang Q, , Xu H, , Zhang M, , Wang Y, , Li D. Volumetric and functional connectivity alterations in patients with chronic cervical spondylotic pain. Neuroradiology 2020; 62: 995–1001. doi: https://doi.org/10.1007/s00234-020-02413-z

24. Kokonyei G, , Galambos A, , Edes AE, , Kocsel N, , Szabo E, , Pap D, , et al.. Anticipation and violated expectation of pain are influenced by trait rumination: an fMRI study. Cogn Affect Behav Neurosci 2019; 19: 56–72. doi: https://doi.org/10.3758/s13415-018-0644-y

25. Chen F, , Chen F, , Shang Z, , Shui Y, , Wu G, , Liu C, , et al.. White matter microstructure degenerates in patients with postherpetic neuralgia. Neurosci Lett 2017; 656: 152–57. doi: https://doi.org/10.1016/j.neulet.2017.07.023

26. Kanjlia S, , Loiotile RE, , Harhen N, , Bedny M. “ Visual” cortices of congenitally blind adults are sensitive to response selection demands in a go/no-go task. Neuroimage 2021; 236. doi: https://doi.org/10.1016/j.neuroimage.2021.118023

27. Seeley WW, , Menon V, , Schatzberg AF, , Keller J, , Glover GH, , Kenna H, , et al.. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007; 27: 2349–56. doi: https://doi.org/10.1523/JNEUROSCI.5587-06.2007

28. Crittenden BM, , Mitchell DJ, , Duncan J. Task encoding across the multiple demand cortex is consistent with a frontoparietal and cingulo-opercular dual networks distinction. J Neurosci 2016; 36: 6147–55. doi: https://doi.org/10.1523/JNEUROSCI.4590-15.2016

29. Stamoulis C, , Vanderwert RE, , Zeanah CH, , Fox NA, , Nelson CA. Neuronal networks in the developing brain are adversely modulated by early psychosocial neglect. J Neurophysiol 2017; 118: 2275–88. doi: https://doi.org/10.1152/jn.00014.2017

30. Dosenbach NUF, , Fair DA, , Miezin FM, , Cohen AL, , Wenger KK, , Dosenbach RAT, , et al.. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A 2007; 104: 11073–78. doi: https://doi.org/10.1073/pnas.0704320104

31. Buckner RL, , Andrews-Hanna JR, , Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008; 1124: 1–38. doi: https://doi.org/10.1196/annals.1440.011

32. Kaiser RH, , Andrews-Hanna JR, , Wager TD, , Pizzagalli DA. Large-Scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry 2015; 72: 603–11. doi: https://doi.org/10.1001/jamapsychiatry.2015.0071

33. Komulainen E, , Glerean E, , Heikkilä R, , Nummenmaa L, , Raij TT, , Isometsä E, , et al.. Escitalopram enhances synchrony of brain responses during emotional narratives in patients with major depressive disorder. Neuroimage 2021; 237. doi: https://doi.org/10.1016/j.neuroimage.2021.118110

34. Xu H, , Seminowicz DA, , Krimmel SR, , Zhang M, , Gao L, , Wang Y. Altered structural and functional connectivity of salience network in patients with classic trigeminal neuralgia. J Pain 2022; 23: 1389–99. doi: https://doi.org/10.1016/j.jpain.2022.02.012

35. Zhang G, , Ma J, , Lu W, , Zhan H, , Zhang X, , Wang K, , et al.. Comorbid depressive symptoms can aggravate the functional changes of the pain matrix in patients with chronic back pain: a resting-state fMRI study. Front Aging Neurosci 2022; 14: 935242. doi: https://doi.org/10.3389/fnagi.2022.935242

36. Huang X, , Chen J, , Liu S, , Gong Q, , Liu T, , Lu C, , et al.. Impaired frontal-parietal control network in chronic prostatitis/chronic pelvic pain syndrome revealed by graph theoretical analysis: a DTI study. Eur J Neurosci 2021; 53: 1060–71. doi: https://doi.org/10.1111/ejn.14962

Comments (0)

No login
gif