Virtual Reality Water Maze Navigation in Children with Neurofibromatosis Type 1 and Reading Disability: an Exploratory Study

Anastasaki, C., Orozco, P., & Gutmann, D. H. (2022). RAS and beyond: the many faces of the neurofibromatosis type 1 protein. Disease Models & Mechanisms, 15(2). https://doi.org/10.1242/dmm.049362

Barker, D., Wright, E., Nguyen, K., Cannon, L., Fain, P., Goldgar, D., Bishop, D. T., Carey, J., Baty, B., Kivlin, J., Willard, H., Waye, J. S., Greig, G., Leinwand, L., Nakamura, Y., O’Connell, P., Leppert, M., Lalouel, J. M., White, R., & Skolnick, M. (1987). Gene for von Recklinghausen neurofibromatosis is in the pericentromeric region of chromosome 17. Science, 236(4805), 1100–1102. https://doi.org/10.1126/science.3107130

Article  PubMed  Google Scholar 

Barquero, L., Sefcik, A., Cutting, L., & Rimrodt, S. (2015). Teaching reading to children with neurofibromatosis type 1: A clinical trial with random assignment to different approaches. Developmental Medicine and Child Neurology, 57(12), 1150–1158. https://doi.org/10.1111/dmcn.12769

Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01

Beaussart, M. L., Barbarot, S., Mauger, C., & Roy, A. (2018). Systematic review and meta-analysis of executive functions in preschool and school-age children with Neurofibromatosis type 1. Journal of the International Neuropsychological Society, 24(9), 977–994. https://doi.org/10.1017/S1355617718000383

Article  PubMed  Google Scholar 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate : A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57(1), 289–300.

Google Scholar 

Benton, A. L., Hamsher, K. D., Varner, N. R., & Spreen, O. (1983). Contributions to neuropsychological assessment: A clinical manual. Oxford University Press.

Google Scholar 

Brewer, V. R., Moore, B. D., & Hiscock, M. (1997). Learning disability subtypes in children with neurofibromatosis. Journal of Learning Disabilities, 30(5), 521–533 http://www.ncbi.nlm.nih.gov/pubmed/9293234

Article  PubMed  Google Scholar 

Clements-Stephens, A. M., Rimrodt, S. L., Gaur, P., & Cutting, L. E. (2008). Visuospatial processing in children with neurofibromatosis type 1. Neuropsychologia, 46(2), 690–697. https://doi.org/10.1016/j.neuropsychologia.2007.09.013

Costa, R. M., Federov, N. B., Kogan, J. H., Murphy, G. G., Stern, J., Ohno, M., Kucherlapati, R., Jacks, T., & Silva, A. J. (2002). Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature, 415(6871), 526–530. https://doi.org/10.1038/nature711

Article  PubMed  Google Scholar 

Cutting, L. E., & Levine, T. M. (2010). Cognitive profile of children with neurofibromatosis and reading disabilities. Child Neuropsychology : A Journal on Normal and Abnormal Development in Childhood and Adolescence, 16(5), 417–432. https://doi.org/10.1080/09297041003761985

Cutting, L. E., Koth, C. W., & Denckla, M. B. (2000). How children with neurofibromatosis type 1 differ from “typical” learning disabled clinic attenders: nonverbal learning disabilities revisited. Developmental Neuropsychology, 17(1), 29–47. https://doi.org/10.1207/S15326942DN1701_02

Descheemaeker, M. J., Plasschaert, E., Frijns, J. P., & Legius, E. (2013). Neuropsychological profile in adults with neurofibromatosis type 1 compared to a control group. Journal of Intellectual Disability Research, 57(9), 874–886. https://doi.org/10.1111/j.1365-2788.2012.01648.x

Devan, B. D., & Hendricks, M. A. (2018). Reproducibility of incentive motivation effects on standard place task performance of the virtual Morris water maze in humans: Neuropsychological implications. Journal of Articles in Support of the Null Hypothesis, 15(1), 13–22.

Google Scholar 

Doser, K., Belmonte, F., Andersen, K. K., Østergaard, J. R., Hove, H., Handrup, M. M., & Ejerskov, C. (2022). School performance of children with neuro fi bromatosis 1 : a nationwide population-based study. January. https://doi.org/10.1038/s41431-022-01149-z

Friedman, J. M. (1999). Epidemiology of neurofibromatosis type 1. American Journal of Medical Genetics - Seminars in Medical Genetics, 89(1), 1–6. https://doi.org/10.1002/(SICI)1096-8628(19990326)89:1<1::AID-AJMG3>3.0.CO;2-8

Article  PubMed  Google Scholar 

Gabel, L. A., Voss, K., Johnson, E., Lindström, E. R., Truong, D. T., Murray, E. M., Cariño, K., Nielsen, C. M., Paniagua, S., & Gruen, J. R. (2021). Identifying dyslexia: Link between maze learning and dyslexia susceptibility gene, DCDC2, in young children. Developmental Neuroscience, 43(2), 116–133. https://doi.org/10.1159/000516667

Gallagher, M., Burwell, R., & Burchinal, M. R. (1993). Severity of spatial learning impairment in aging: Development of a learning index for performance in the Morris water maze. Behavioral Neuroscience, 107(4), 618–626.

Article  PubMed  Google Scholar 

Gioia, G. A., Isquith, P. K., Guy, S. C., & Kenworthy, L. (2015). BRIEF-2: Behavioral Rating Inventory of Executive Function, Second Edition. Lutz, FL, Psychological assessment resources.

Google Scholar 

Hammill, D. D., Pearson, N. A., & Voress, J. K. (1993). Developmental Test of Visual Perception (2nd ed.). PRO-ED Inc..

Google Scholar 

Hammill, D. D., Wiederholt, J. L., Allen, E. A. (2014). Test of silent word reading efficiency (2nd ed.). PRO-ED.

Harrison, F. E., Hosseini, A. H., & McDonald, M. P. (2009). Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory tasks. Behavioural Brain Research, 198(1), 247–251. https://doi.org/10.1016/J.BBR.2008.10.015

Article  PubMed  Google Scholar 

Hawthorne, E. L., & Baker, M. R. (2017). What are the Gallagher-Baker indices in Water Maze? http://hvsimage.com/permalink/gallagher-baker-indices/

HVS Image. (2016). Virtual reality morris water maze (Version 2017.7) [Computer software]. HVS Image.

Hyman, S. L., Shores, A., & North, K. N. (2005). The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology, 65(1), 1037–1044.

Article  PubMed  Google Scholar 

Hyman, S. L., Shores, E. A., & North, K. N. (2006). Learning disabilities in children with neurofibromatosis type 1: Subtypes, cognitive profile, and attention-deficit-hyperactivity disorder. Developmental Medicine and Child Neurology, 48(12), 973–977. https://doi.org/10.1017/S0012162206002131

Article  PubMed  Google Scholar 

Krab, L. C., Aarsen, F. K., de Goede-Bolder, A., Catsman-Berrevoets, C. E., Arts, W. F., Moll, H. A., & Elgersma, Y. (2008). Impact of neurofibromatosis type 1 on school performance. Journal of Child Neurology, 23(9), 1002–1010. https://doi.org/10.1177/0883073808316366

Article  PubMed  Google Scholar 

Lam, V., Takechi, R., Albrecht, M. A., D’Alonzo, Z. J., Graneri, L., Hackett, M. J., Coulson, S., Fimognari, N., Nesbit, M., & Mamo, J. C. L. (2018). Longitudinal performance of senescence accelerated mouse prone-strain 8 (SAMP8) mice in an olfactory-visual water maze challenge. Frontiers in Behavioral Neuroscience, 12(August), 1–8. https://doi.org/10.3389/fnbeh.2018.00174

Article  Google Scholar 

Legius, E., Messiaen, L., Wolkenstein, P., Pancza, P., Avery, R. A., Berman, Y., Blakeley, J., Babovic-Vuksanovic, D., Cunha, K. S., Ferner, R., Fisher, M. J., Friedman, J. M., Gutmann, D. H., Kehrer-Sawatzki, H., Korf, B. R., Mautner, V. F., Peltonen, S., Rauen, K. A., Riccardi, V., et al. (2021). Revised diagnostic criteria for neurofibromatosis type 1 and Legius syndrome: an international consensus recommendation. Genetics in Medicine, 23(8), 1506–1513. https://doi.org/10.1038/s41436-021-01170-5

Article  PubMed  PubMed Central  Google Scholar 

Lehtonen, A., Howie, E., Trump, D., & Huson, S. M. (2013). Behaviour in children with neurofibromatosis type 1: cognition, executive function, attention, emotion, and social competence. Developmental Medicine and Child Neurology, 55(2), 111–125. https://doi.org/10.1111/j.1469-8749.2012.04399.x

Article  PubMed  Google Scholar 

Levine, T. M., Materek, A., Abel, J., O’Donnell, M., & Cutting, L. E. (2006). Cognitive profile of neurofibromatosis type 1. Seminars in Pediatric Neurology, 13(1), 8–20. https://doi.org/10.1016/j.spen.2006.01.006

Li, W., Cui, Y., Kushner, S. A., Brown, R. A. M., Jentsch, J. D., Frankland, P. W., Cannon, T. D., & Silva, A. J. (2005). The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Current Biology, 15(21), 1961–1967. https://doi.org/10.1016/j.cub.2005.09.043

Article  PubMed  Google Scholar 

Littler, M., & Morton, N. E. (1990). Segregation analysis of peripheral neurofibromatosis (NF1). Journal of Medical Genetics, 27(5), 307–310. https://doi.org/10.1136/jmg.27.5.307

Article  PubMed  PubMed Central  Google Scholar 

Monroe, C. L., Dahiya, S., & Gutmann, D. H. (2017). Dissecting clinical heterogeneity in neurofibromatosis type 1. Annual Review of Pathology: Mechanisms of Disease, 12, 53–74. https://doi.org/10.1146/annurev-pathol-052016-100228

Article  Google Scholar 

Morris, R. G. M. (1981). Spatial localization does not require the presence of local cues. Learning and Motivation, 12(2), 239–260. https://doi.org/10.1016/0023-9690(81)90020-5

Article  Google Scholar 

Morris, R. G. M., Garrud, P., Rawlins, J. N. P., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(June), 681–683.

Article  PubMed  Google Scholar 

North, K. (1993). Neurofibromatosis Type 1 : Review Australian Clinic. Journal of Child Neurology, 8, 395–402. https://doi.org/10.1177/2F088307389300800421

Article  PubMed  Google Scholar 

North, K. (2000). Neurofibromatosis type 1. American Journal of Medical Genetics, 97(2), 119–127 http://www.ncbi.nlm.nih.gov/pubmed/11180219

Article  PubMed  Google Scholar 

O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171–175. https://doi.org/10.1016/0006-8993(71)90358-1

Article  PubMed  Google Scholar 

O’Mara, S. M., & Aggleton, J. P. (2019). Space and memory (far) beyond the hippocampus: Many subcortical structures also support cognitive mapping and mnemonic processing. Frontiers in Neural Circuits, 13(August), 1–12. https://doi.org/10.3389/fncir.2019.00052

Article  Google Scholar 

Orraca-Castillo, M., Estévez-Pérez, N., & Reigosa-Crespo, V. (2014). Neurocognitive profiles of learning disabled children with neurofibromatosis type 1. Frontiers in Human Neuroscience, 8(JUNE), 1–9. https://doi.org/10.3389/fnhum.2014.00386

Pereira, I. T., & Burwell, R. D. (2015). Using the spatial learning index to evaluate performance on the water maze. Behavioral Neuroscience, 129(4), 533–539. https://doi.org/10.1037/bne0000078

Article  PubMed Central  Google Scholar 

R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/

Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components. Biometrics Bulletin, 2(6), 110–114 https://www.jstor.org/stable/3002019

Article  PubMed  Google Scholar 

Schoenfeld, R., Schiffelholz, T., Beyer, C., Leplow, B., & Foreman, N. (2017). Variations of the Morris water maze task to comparatively assess human and rodent place navigation. Neurobiology of Learning and Memory, 139, 117–127. https://doi.org/10.1016/j.nlm.2016.12.022

Article  PubMed  Google Scholar 

Schrimsher, G. W., Billingsley, R. L., Slopis, J. M., & Moore, B. D. (2003). Visual-spatial performance deficits in children with neurofibromatosis type-1. American Journal of Medical Genetics, 120 A(3), 326–330. https://doi.org/10.1002/ajmg.a.20048

Seizinger, B. R., Rouleau, G. A., Ozelius, L. J., Lane, A. H., Faryniarz, A. G., Chao, M. V., Huson, S., Korf, B. R., Parry, D. M., Pericak-Vance, M. A., Collins, F. S., Hobbs, W. J., Falcone, B. G., Iannazzi, J. A., Roy, J. C., St George-Hyslop, P. H., Tanzi, R. E., Bothwell, M. A., Upadhyaya, M., et al. (1987). Genetic linkage of von Recklinghausen neurofibromatosis to the nerve growth factor receptor gene. Cell, 49(5), 589–594. https://doi.org/10.1016/0092-8674(87)90534-4

Article  PubMed  Google Scholar 

Thornberry, C., Cimadevilla, J. M., & Commins, S. (2021). Virtual Morris water maze: opportunities and challenges. Reviews in the Neurosciences, 32(8), 887–903. https://doi.org/10.1515/revneuro-2020-0149

Article  PubMed  Google Scholar 

Torgesen, J. K., Wagner, R. K, & Rashotte, C. A. (2012). Test of word reading efficiency, second edition (TOWRE-2). PRO-ED.

Ullrich, N. J., Ayr, L., Leaffer, E., Irons, M. B., & Rey-Casserly, C. (2010). Pilot study of a novel computerized task to assess spatial learning in children and adolescents with neurofibromatosis type i. Journal of Child Neurology, 25(10), 1195–1202. https://doi.org/10.1177/0883073809358454

Article  PubMed  Google Scholar 

Ullrich, N. J., Payne, J. M., Walsh, K. S., Cutter, G., Packer, R., North, K., & Rey-Casserly, C. (2020). Visual spatial learning outcomes for clinical trials in neurofibromatosis type 1. Annals of Clinical Translational Neurology, 7(2), 245–249. https://doi.org/10.1002/acn3.50976

Article  PubMed  PubMed Central  Google Scholar 

Van Eylen, L., Plasschaert, E., Wagemans, J., Boets, B., Legius, E., Steyaert, J., & Noens, I. (2017). Visuoperceptual processing in children with neurofibromatosis type 1: True deficit or artefact? American Journal of Medical GeneticsPart B: Neuropsychiatric Genetics, 174(4), 342–358. https://doi.org/10.1002/ajmg.b.32522

Article  Google Scholar 

Wagner, R. K., Torgesesn, J. K., Rashotte, C. A., & Pearson, N. A. (2013). Comprehensive test of phonological processing (2nd ed.) PRO-ED.

Wechsler, D. (2011). Wechsler Abbreviated Scale of Intelligence–Second Edition (WASI-II). NCS Pearson.

Wechsler, D. (2014). Wechsler intelligence scale for children (WISC-V) (5th ed.). Pearson.

留言 (0)

沒有登入
gif