1. Gillies RJ, , Kinahan PE, , Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016; 278: 563–77. doi: https://doi.org/10.1148/radiol.2015151169
2. Scapicchio C, , Gabelloni M, , Barucci A, , Cioni D, , Saba L, , Neri E. A deep look into radiomics. Radiol Med 2021; 126: 1296–1311. doi: https://doi.org/10.1007/s11547-021-01389-x
3. Parekh V, , Jacobs MA. Radiomics: a new application from established techniques. Expert Rev Precis Med Drug Dev 2016; 1: 207–26. doi: https://doi.org/10.1080/23808993.2016.1164013
4. Leite AF, , Vasconcelos K de F, , Willems H, , Jacobs R. Radiomics and machine learning in oral healthcare. Proteomics Clin Appl 2020; 14(3): e1900040. doi: https://doi.org/10.1002/prca.201900040
5. Lambin P, , Leijenaar RTH, , Deist TM, , Peerlings J, , de Jong EEC, , van Timmeren J, , et al.. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 2017; 14: 749–62. doi: https://doi.org/10.1038/nrclinonc.2017.141
6. Veena D, , Jatti A, , Joshi R, , D. KS. Characterization of dental pathologies using digital panoramic X-ray images based on texture analysis. In: Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Int Conf [Internet]. ; 2017. Available from: https://pubmed.ncbi.nlm.nih.gov/29059942/
7. van Timmeren JE, , Cester D, , Tanadini-Lang S, , Alkadhi H, , Baessler B. Radiomics in medical imaging-"how-to" guide and critical reflection. Insights Imaging 2020; 11(1): 91. doi: https://doi.org/10.1186/s13244-020-00887-2
8. Park JE, , Kim D, , Kim HS, , Park SY, , Kim JY, , Cho SJ, , et al.. Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement. Eur Radiol 2020; 30: 523–36. doi: https://doi.org/10.1007/s00330-019-06360-z
9. Mosier KM. Lesions of the jaw. semin ultrasound, CT MRI. 2015; 444–50.
10. Regezi JA. Odontogenic cysts, odontogenic tumors, fibroosseous, and giant cell lesions of the jaws. Mod Pathol 2002; 15: 331–41. doi: https://doi.org/10.1038/modpathol.3880527
11. Baumhoer D. Bone-Related Lesions of the Jaws. Surg Pathol Clin. Internet]. 2017. Available from: https://pubmed.ncbi.nlm.nih.gov/28797509/
12. Moola S, , Munn Z, , Tufanaru C, , Aromataris E, , Sears K, , Sfetcu R, , et al.. Chapter 7: Systematic reviews of etiology and risk. In: Joanna Briggs Institute Rewiewer’s Manual for Evidence Synthesis. The Joanna Briggs Institute; 2017, pp. 1–5.
13. Abdolali F, , Zoroofi RA, , Otake Y, , Sato Y. Automated classification of maxillofacial cysts in cone beam CT images using contourlet transformation and spherical harmonics. Comput Methods Programs Biomed 2017; 139: 197–207: S0169-2607(16)30389-3. doi: https://doi.org/10.1016/j.cmpb.2016.10.024
14. Alzubaidi MA, , Otoom M. A comprehensive study on feature types for osteoporosis classification in dental panoramic radiographs. Comput Methods Programs Biomed 2020; 188: 105301: S0169-2607(19)31369-0. doi: https://doi.org/10.1016/j.cmpb.2019.105301
15. Sela EI, , Widyaningrum R. Osteoporosis detection using important shape-based features of the porous trabecular bone on the dental X-ray images. Ijacsa 2015; 6(9. doi: https://doi.org/10.14569/IJACSA.2015.060933
16. Yilmaz E, , Kayikcioglu T, , Kayipmaz S. Computer-aided diagnosis of periapical cyst and keratocystic odontogenic tumor on cone beam computed tomography. Comput Methods Programs Biomed 2017; 146: 91–100: S0169-2607(16)30429-1. doi: https://doi.org/10.1016/j.cmpb.2017.05.012
17. Haghnegahdar AA, , Kolahi S, , Khojastepour L, , Tajeripour F. Diagnosis of tempromandibular disorders using local binary patterns. J Biomed Phys Eng 2018; 8: 87–96. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042785491&doi=10.22086%2Fjbpe.v0i0.577&partnerID=40&md5=20acd7ffc2268d5985c1f81104195d0c
18. Okada K, , Rysavy S, , Flores A, , Linguraru MG. Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans. Med Phys 2015; 42: 1653–65. doi: https://doi.org/10.1118/1.4914418
19. Roberts MG, , Graham J, , Devlin H. Image texture in dental panoramic radiographs as a potential biomarker of osteoporosis. IEEE Trans Biomed Eng 2013; 60: 2384–92. doi: https://doi.org/10.1109/TBME.2013.2256908
20. Hwang JJ, , Lee J-H, , Han S-S, , Kim YH, , Jeong H-G, , Choi YJ, , et al.. Strut analysis for osteoporosis detection model using dental panoramic radiography. Dentomaxillofac Radiol 2017; 46(7): 20170006. doi: https://doi.org/10.1259/dmfr.20170006
21. Ito K, , Muraoka H, , Hirahara N, , Sawada E, , Hirohata S, , Otsuka K, , et al.. Quantitative assessment of mandibular bone marrow using computed tomography texture analysis for detect stage 0 medication-related osteonecrosis of the jaw. Eur J Radiol 2021; 145: 110030: S0720-048X(21)00511-8. doi: https://doi.org/10.1016/j.ejrad.2021.110030
22. Ito K, , Muraoka H, , Hirahara N, , Sawada E, , Okada S, , Kaneda T. Computed tomography texture analysis of mandibular condylar bone marrow in diabetes mellitus patients. Oral Radiol 2021; 37: 693–99. doi: https://doi.org/10.1007/s11282-021-00517-7
23. Jiang ZY, , Lan TJ, , Cai WX, , Tao Q. Primary clinical study of radiomics for diagnosing simple bone cyst of the jaw. Dentomaxillofac Radiol 2021; 50(7): 20200384. doi: https://doi.org/10.1259/dmfr.20200384
24. Kavitha MS, , An S-Y, , An C-H, , Huh K-H, , Yi W-J, , Heo M-S, , et al.. Texture analysis of mandibular cortical bone on digital dental panoramic radiographs for the diagnosis of osteoporosis in Korean women. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 119: 346–56: S2212-4403(14)01393-5. doi: https://doi.org/10.1016/j.oooo.2014.11.009
25. Kawashima Y, , Fujita A, , Buch K, , Li B, , Qureshi MM, , Chapman MN, , et al.. Using texture analysis of head CT images to differentiate osteoporosis from normal bone density. [Internet]. Eur J Radiol 2019; 116: 212–18: S0720-048X(19)30176-7. doi: https://doi.org/10.1016/j.ejrad.2019.05.009
26. Oda M, , Staziaki PV, , Qureshi MM, , Andreu-Arasa VC, , Li B, , Takumi K, , et al.. Using CT texture analysis to differentiate cystic and cystic-appearing odontogenic lesions. Eur J Radiol 2019; 120: 108654: S0720-048X(19)30304-3. doi: https://doi.org/10.1016/j.ejrad.2019.108654
27. Muraoka H, , Ito K, , Hirahara N, , Ichiki S, , Kondo T, , Kaneda T. Magnetic resonance imaging texture analysis in the quantitative evaluation of acute osteomyelitis of the mandibular bone. Dentomaxillofac Radiol 2022; 51(1): 20210321. doi: https://doi.org/10.1259/dmfr.20210321
28. Bianchi J, , de Oliveira Ruellas AC, , Gonçalves JR, , Paniagua B, , Prieto JC, , Styner M, , et al.. Osteoarthritis of the temporomandibular joint can be diagnosed earlier using biomarkers and machine learning. Sci Rep 2020; 10(1): 8012. doi: https://doi.org/10.1038/s41598-020-64942-0
29. De Rosa CS, , Bergamini ML, , Palmieri M, , Sarmento DJ de S, , de Carvalho MO, , Ricardo ALF, , et al.. Differentiation of periapical granuloma from radicular cyst using cone beam computed tomography images texture analysis. Heliyon 2020; 6: e05194. doi: https://doi.org/10.1016/j.heliyon.2020.e05194
30. Marar RFA, , Uliyan DM, , Al-Sewadi HA. Mandible bone osteoporosis detection using cone-beam computed tomography. Eng Technol Appl Sci Res 2020; 10: 6027–33. doi: https://doi.org/10.48084/etasr.3637
31. Nurtanio I, , Purnama I, , Hariadi M, , Purnomo M. Classifying Cyst and Tumor Lesion Using Support Vector Machine Based on Dental Panoramic Images Texture Features. IAENG Int J Comput Sci. 2013;40(1):29–37.
32. Pociask E, , Nurzynska K, , Obuchowicz R, , Bałon P, , Uryga D, , Strzelecki M, , et al.. Differential diagnosis of cysts and granulomas supported by texture analysis of intraoral radiographs. Sensors (Basel) 2021; 21(22): 7481. doi: https://doi.org/10.3390/s21227481
33. Orhan K, , Driesen L, , Shujaat S, , Jacobs R, , Chai X. Development and validation of a magnetic resonance imaging-based machine learning model for TMJ pathologies. Biomed Res Int 2021; 2021: 6656773. doi: https://doi.org/10.1155/2021/6656773
34. Bianchi J, , Gonçalves JR, , de Oliveira Ruellas AC, , Ashman LM, , Vimort J-B, , Yatabe M, , et al.. Quantitative bone imaging biomarkers to diagnose temporomandibular joint osteoarthritis. Int J Oral Maxillofac Surg 2021; 50: 227–35: S0901-5027(20)30163-6. doi: https://doi.org/10.1016/j.ijom.2020.04.018
35. Gonçalves BC, , de Araújo EC, , Nussi AD, , Bechara N, , Sarmento D, , Oliveira MS, , et al.. Texture analysis of cone-beam computed tomography images assists the detection of furcal lesion. J Periodontol 2020; 91: 1159–66. doi: https://doi.org/10.1002/JPER.19-0477
36. Moskowitz CS, , Welch ML, , Jacobs MA, , Kurland BF, , Simpson AL. Radiomic analysis: study design, statistical analysis, and other bias mitigation strategies. Radiology 2022; 304: 265–73. doi: https://doi.org/10.1148/radiol.211597
37. Tanner C, , Khazen M, , Kessar P, , Leach MO, , Hawkes DJ. n.d.).( Classification improvement by segmentation refinement: application to contrast-enhanced MR-mammography. Lect Notes Comput Sci [Internet] 2004 [Cited 2022 Aug 12];3216(PART 1):184–91 Available From:. Available from: https://link.springer.com/chapter/10.1007/978-3-540-30135-6_23
38. Parmar C, , Grossmann P, , Bussink J, , Lambin P, , Aerts HJWL. Machine learning methods for quantitative radiomic biomarkers. Sci Rep 2015; 5: 13087. doi: https://doi.org/10.1038/srep13087
39. Lubner MG, , Smith AD, , Sandrasegaran K, , Sahani DV, , Pickhardt PJ. CT texture analysis: definitions, applications, biologic correlates, and challenges. Radiographics 2017; 37: 1483–1503. doi: https://doi.org/10.1148/rg.2017170056
40. Mayerhoefer ME, , Materka A, , Langs G, , Häggström I, , Szczypiński P, , Gibbs P, , et al.. Introduction to radiomics. J Nucl Med 2020; 61: 488–95. doi: https://doi.org/10.2967/jnumed.118.222893
41. Burges CJC. n.d.).( A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 1998 22 [Internet] 1998 [Cited 2022 Aug 12];2(2):121–67 Available From:. Available from: https://link.springer.com/article/10.1023/A:1009715923555
42. Caramella C, , Allorant A, , Orlhac F, , Bidault F, , Asselain B, , Ammari S, , et al.. Can we trust the calculation of texture indices of CT images? A phantom study. Med Phys 2018; 45: 1529–36. doi: https://doi.org/10.1002/mp.12809
43. Chalkidou A, , O’Doherty MJ, , Marsden PK. False discovery rates in PET and CT studies with texture features: A systematic review. PLoS One 2015; 10(5): e0124165. doi: https://doi.org/10.1371/journal.pone.0124165
44. Alyass A, , Turcotte M, , Meyre D. From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med Genomics 2015; 8: 33. doi: https://doi.org/10.1186/s12920-015-0108-y
45. Marx V. Biology: the big challenges of big data. Nature 2013; 498: 255–60. doi: https://doi.org/10.1038/498255a
46. Cordeiro MS, , Backes AR, , Júnior AFD, , Gonçalves EHG, , de Oliveira JX. Fibrous dysplasia characterization using lacunarity analysis. J Digit Imaging 2016; 29: 134–40. doi: https://doi.org/10.1007/s10278-015-9815-3
47. Luo D, , Zeng W, , Chen J, , Tang W. Deep learning for automatic image segmentation in stomatology and its clinical application. Front Med Technol 2021; 3: 767836. doi: https://doi.org/10.3389/fmedt.2021.767836
48. Limkin EJ, , Sun R, , Dercle L, , Zacharaki EI, , Robert C, , Reuzé S, , et al.. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann Oncol 2017; 28: 1191–1206. doi: https://doi.org/10.1093/annonc/mdx034
49. Peng Z, , Wang Y, , Wang Y, , Jiang S, , Fan R, , Zhang H, , et al.. Application of radiomics and machine learning in head and neck cancers. Int J Biol Sci 2021; 17: 475–86. doi: https://doi.org/10.7150/ijbs.55716
50. Moher D, , Liberati A, , Tetzlaff J, , Altman DG, , PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e123–30: e1000097. doi: https://doi.org/10.1371/journal.pmed.1000097
51. University of York: Centre for Reviews and Dissemination. 2020.
Comments (0)